ketoprofen and valsartan

ketoprofen has been researched along with valsartan in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (41.67)29.6817
2010's7 (58.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Faller, B; Wohnsland, F1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Koçyiğit-Kaymakçoğlu, B; Rollas, S; Unsalan, S1
Abe, J; Fukuda, A; Hasegawa, S; Hatahira, H; Ishiguro, M; Kanoh, H; Kinosada, Y; Motooka, Y; Naganuma, M; Nakamura, M; Nakao, S; Sasaoka, S; Seishima, M; Ueda, N1

Reviews

1 review(s) available for ketoprofen and valsartan

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

11 other study(ies) available for ketoprofen and valsartan

ArticleYear
High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes.
    Journal of medicinal chemistry, 2001, Mar-15, Volume: 44, Issue:6

    Topics: Alkanes; Humans; Hydrogen-Ion Concentration; Intestinal Absorption; Membranes, Artificial; Octanols; Permeability; Pharmaceutical Preparations; Solubility; Water

2001
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:1

    Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics

2011
Determination and validation of ketoprofen, pantoprazole and valsartan together in human plasma by high performance liquid chromatography.
    Die Pharmazie, 2006, Volume: 61, Issue:7

    Topics: 2-Pyridinylmethylsulfinylbenzimidazoles; Anti-Inflammatory Agents, Non-Steroidal; Anti-Ulcer Agents; Antihypertensive Agents; Benzimidazoles; Chromatography, High Pressure Liquid; Humans; Indicators and Reagents; Ketoprofen; Omeprazole; Pantoprazole; Reference Standards; Reproducibility of Results; Sulfoxides; Tetrazoles; Valine; Valsartan

2006
Evaluation of Drug-Induced Photosensitivity Using the Japanese Adverse Drug Event Report (JADER) Database.
    Biological & pharmaceutical bulletin, 2017, Volume: 40, Issue:12

    Topics: Adolescent; Adult; Adverse Drug Reaction Reporting Systems; Aged; Aged, 80 and over; Angiotensin II Type 1 Receptor Blockers; Anti-Inflammatory Agents, Non-Steroidal; Drug Combinations; Female; Humans; Hydrochlorothiazide; Incidence; Japan; Ketoprofen; Losartan; Male; Middle Aged; Odds Ratio; Photosensitivity Disorders; Seasons; Sodium Chloride Symporter Inhibitors; Valsartan; Young Adult

2017