kb-r7943 has been researched along with ethylisopropylamiloride* in 2 studies
2 other study(ies) available for kb-r7943 and ethylisopropylamiloride
Article | Year |
---|---|
Role of Na+/H+ exchanger in acetylcholine-mediated pulmonary artery contraction of spontaneously hypertensive rats.
Compared to sympathetic nervous system, the role of parasympathetic innervation on tone development, especially under diseased conditions, of the pulmonary artery is relatively unknown. In this study, the contractile effect of acetylcholine and the type(s) of muscarinic (M) receptor involved in the pulmonary artery (1st intralobar branch; endothelium-denuded, under resting tension) of the normotensive Wistar-Kyoto (WKY) and age-matched (male, 22-26 weeks old) Spontaneously hypertensive rats (SHR) were investigated. Cumulative administration of acetylcholine (> or =0.1 microM) caused a concentration-dependent increase in tension (antagonised by p-fluoro-hexahydro-sila-difenidol and 4-diphenylacetoxy-N-methylpiperidine, both are selective muscarinic M(3) receptor antagonists) and the magnitude of maximum contraction (expressed as % of 50 mM [K(+)](o)-induced contraction) was markedly enhanced in the presence of neostigmine (10 microM, an anti-cholinesterase) (acetylcholine 30 microM, SHR: 72% vs. 35%; WKY: 32% vs. 20%). In SHR only, acetylcholine-elicited contraction was suppressed by 1-[beta-[3-(4-Methoxyphenyl)-propoxyl]-4-methoxyphenethyl]-1H-imidazole (SK&F 96365, 1 microM), amiloride (500 microM), ethyl-isopropyl-amiloride (EIPA, 10 microM), 2-[2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R 7943, 5 microM), 2,4-dichlorobenzamil (10 microM), and an equal molar substitution of [Na(+)](o) (< or =30 mM) with choline or N-methyl-D-glucamine. In nominally [Ca(2+)](o)-free, EGTA (0.5 mM)-containing Krebs' solution, acetylcholine (> or =3 microM) only elicited a small contraction. In conclusion, muscarinic M(3) receptor activation is responsible for the pulmonary artery contraction induced by acetylcholine, with a greater magnitude observed in SHR. The exaggerated contraction in SHR is probably due to an influx of [Na(+)](o) through the Na(+)/H(+) exchanger and the store-operated channels (SOC) into smooth muscle cells. Elevation of cytosolic [Na(+)](i) subsequently leads to an influx of [Ca(2+)](o) through the reverse mode of the Na(+)/Ca(2+) exchanger seems to play a permissive role in mediating the exaggerated contractile response of acetylcholine recorded in the SHR. Topics: Acetylcholine; Amiloride; Animals; Calcium; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Female; Hypertension; Imidazoles; In Vitro Techniques; Indoles; Male; Maleimides; Muscarinic Agonists; Muscarinic Antagonists; Neostigmine; Protein Kinase C; Pulmonary Artery; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Muscarinic; Sodium; Sodium-Calcium Exchanger; Sodium-Hydrogen Exchangers; Sodium-Potassium-Exchanging ATPase; Species Specificity; Thiourea; Vasoconstriction; Vasodilator Agents | 2003 |
Influence of a Na+-H+ exchange inhibitor ethylisopropylamiloride, a Na+-Ca2+ exchange inhibitor KB-R7943 and their combination on the increases in contractility and Ca2+ transient induced by angiotensin II in isolated adult rabbit ventricular myocytes.
In rabbit, ventricular myocytes loaded with indo-1/AM, angiotensin II (0.1 nM-0.1 microM) exerted a positive inotropic effect with a significant increase in the amplitude of Ca2+ transients. For a given increase in cell shortening, the increase in Ca2+ transients induced by angiotensin II was less than that induced by elevation of extracellular Ca2+ concentration ([Ca2+]0) or isoprenaline, an indication that both the increase in mobilization of intracellular Ca2+ ions and myofibrillar sensitivity to Ca2+ ions contribute to the positive inotropic effect of angiotensin II. The effects of angiotensin II on Ca2+ transients and cell shortening were inhibited by the AT1 receptor antagonist losartan. A Na+ -H+ exchange inhibitor EIPA [5-(N-ethyl-N-isopropyl)amiloride] at 1 and 3 microM did not affect the Ca2+ transients and cell shortening, but it inhibited the angiotensin-II-induced responses in a concentration-dependent manner more effectively than the responses to elevation of [Ca2+]0, indicating that EIPA elicited a selective inhibitory action on the effects of angiotensin II. The observation that EIPA at 10 microM abolished the positive inotropic effect of angiotensin II without a significant depression of the inotropic response to elevation of [Ca2+]0 supports the selective action of EIPA at the high concentration on the response to angiotensin II. A novel selective Na+ -Ca2+ exchange (reverse mode) inhibitor KB-R7943, 2-[2-[4-(-nitrobenzyloxy)phenyl]ethyl] isothiourea methanesulphonate, at 0.3 and 1 microM inhibited also the responses to angiotensin II more effectively than the response to elevation of [Ca2+]0; however, over the same concentration range it suppressed significantly the amplitude of Ca2+ transients and cell shortening. Combination of EIPA (3 microM) and KB-R7943 (0.3 microM), each of which attenuated partially the angiotensin-II-induced responses, abolished the positive inotropic effect and the increase in Ca2+ transients induced by angiotensin II with much less depressant effect on the responses to elevation of [Ca2+]0. Thus, these ion exchange inhibitors exerted selective actions on the respective targets. The results with these selective inhibitors indicate that the activation of Na+ -H+ exchanger and subsequent modulation of the activity of Na+ -Ca2+ exchanger may be responsible for the increase in [Ca2+]i and the myofilament Ca2+ sensitization induced by stimulation of AT1 receptors by angiotensin II in rabbit ventricular myocytes. Topics: Amiloride; Angiotensin II; Animals; Calcium; Calcium Signaling; Drug Interactions; Heart; In Vitro Techniques; Male; Myocardial Contraction; Myocardium; Rabbits; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Sodium-Calcium Exchanger; Sodium-Hydrogen Exchangers; Thiourea | 1999 |