kb-2115 has been researched along with 3-5-diiodothyronine* in 2 studies
2 review(s) available for kb-2115 and 3-5-diiodothyronine
Article | Year |
---|---|
Thyroid Hormone Analogues: An Update.
The development of thyroid hormone (TH) analogues was prompted by the attempt to exploit the effects of TH on lipid metabolism, avoiding cardiac thyrotoxicosis. Analysis of the relative distribution of the α and β subtypes of nuclear TH receptors (TRα and TRβ) showed that TRα and TRβ are responsible for cardiac and metabolic responses, respectively. Therefore, analogues with TRβ selectivity were developed, and four different compounds have been used in clinical trials: GC-1 (sobetirome), KB-2115 (eprotirome), MB07344/VK2809, and MGL-3196 (resmetirom). Each of these compounds was able to reduce low-density lipoprotein cholesterol, but a phase 3 trial with eprotirome was interrupted because of a significant increase in liver enzymes and the contemporary report of cartilage side effects in animals. As a consequence, the other projects were terminated as well. However, in recent years, TRβ agonists have raised new interest for the treatment of nonalcoholic fatty liver disease (NAFLD). After obtaining excellent results in experimental models, clinical trials have been started with MGL-3196 and VK2809, and the initial reports are encouraging. Sobetirome turned out to be effective also in experimental models of demyelinating disease. Aside TRβ agonists, TH analogues include some TH metabolites that are biologically active on their own, and their synthetic analogues. 3,5,3'-triiodothyroacetic acid has already found clinical use in the treatment of some cases of TH resistance due to TRβ mutations, and interesting results have recently been reported in patients with the Allan-Herndon-Dudley syndrome, a rare disease caused by mutations in the TH transporter MCT8. 3,5-diiodothyronine (T2) has been used with success in rat models of dyslipidemia and NAFLD, but the outcome of a clinical trial with a synthetic T2 analogue was disappointing. 3-iodothyronamine (T1AM) is the last entry in the group of active TH metabolites. Promising results have been obtained in animal models of neurological injury induced by β-amyloid or by convulsive agents, but no clinical data are available so far. Topics: Acetates; Anilides; Animals; Central Nervous System Diseases; Clinical Trials as Topic; Diiodothyronines; Drug Design; Dyslipidemias; Humans; Liver Diseases; Male; Mice; Mutation; Non-alcoholic Fatty Liver Disease; Phenols; Pyridazines; Rats; Signal Transduction; Thyroid Hormone Receptors alpha; Thyroid Hormone Receptors beta; Thyroid Hormones; Thyronines; Triiodothyronine; Uracil | 2020 |
Thyroid hormones, mitochondrial bioenergetics and lipid handling.
The article is principally intended to describe the recent evolutions in the field of research concerned with the metabolic actions of thyroid hormones and those of some of their metabolites or derivatives. Mitochondria, as a result of their functions, represent the principal objective of scientists investigating the mechanisms underlying the effects of thyroid hormones or their metabolites/derivatives.. Indeed, some important recent findings concern these organelles, and in particular mitochondrial uncoupling and its modulation by effectors. Traditionally, thyroxine (T4) and tri-iodo-L-thyronine (T3) were the only thyroid hormones considered to have metabolic effects, and they alone were considered for potential as agents that might counteract some important abnormalities such as dyslipidaemias and obesity. Several observations, however, led to a reconsideration of this idea. In recent years, studies dealing with the biological activities of some natural metabolites or structural analogues of thyroid hormones have revealed abilities to ameliorate some major worldwide medical problems, such as artherosclerosis, obesity and cardiovascular diseases. Among natural metabolites, 3,5-diiodothyronine (T2) has been shown to powerfully reduce adiposity and dyslipidaemia and to reverse hepatic steatosis without unfavourable side-effects usually observed when T3 or T4 is used. Examples of synthetic analogues are GC-1 (or sobetirome) and KB2115 (or eprotirome) which show ipolipidaemic and antiaterogenic capacities. Clinical trials are in progress for these last agents.. In view of the above-mentioned actions, some of these compounds are now undergoing clinical trials and may have important implications for clinical practice or researches in the field of both endocrinology and metabolic-related abnormalities such as diabetes and dyslipidaemias. Topics: Acetates; Adiposity; Anilides; Animals; Atherosclerosis; Cardiovascular Diseases; Clinical Trials as Topic; Diiodothyronines; Dyslipidemias; Energy Metabolism; Fatty Liver; Humans; Lipid Metabolism; Mice; Mitochondria; Obesity; Phenols; Rats; Thyroid Hormones | 2010 |