kaolinite and hydroxide-ion

kaolinite has been researched along with hydroxide-ion* in 2 studies

Other Studies

2 other study(ies) available for kaolinite and hydroxide-ion

ArticleYear
Optical monitoring of particle aggregates.
    Journal of environmental sciences (China), 2009, Volume: 21, Issue:1

    Methods for monitoring particle aggregation are briefly reviewed. Most of the techniques are based on some form of light scattering and may be greatly dependent on the optical properties of aggregates, which are not generally known. As fractal aggregates grow larger their density can become very low and this has important practical consequences for light scattering. For instance, the scattering coefficient may be much less than for solid objects, which means that the aggregates can appear much smaller than their actual size by a light transmission method. Also, for low-density objects, a high proportion of the scattered light energy is within a small angle of the incident beam, which may also be relevant for measurements with aggregates. Using the "turbidity fluctuation" technique as an example, it is shown how the apparent size of hydroxide flocs depends mainly on the included impurity particles, rather than the hydroxide precipitate itself. Results using clay suspensions with hydrolyzing coagulants and polymeric flocculants under different string conditions are discussed.

    Topics: Alum Compounds; Aluminum Silicates; Clay; Ferric Compounds; Flocculation; Fractals; Hydroxides; Kaolin; Light; Nephelometry and Turbidimetry; Particle Size; Scattering, Radiation; Water

2009
Modification of kaolinite surfaces through mechanochemical treatment--a mid-IR and near-IR spectroscopic study.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2002, Volume: 58, Issue:13

    The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.

    Topics: Hydroxides; Kaolin; Spectrophotometry, Infrared; Stress, Mechanical

2002