kaolinite and brilliant-green

kaolinite has been researched along with brilliant-green* in 2 studies

Other Studies

2 other study(ies) available for kaolinite and brilliant-green

ArticleYear
Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: A comparative study.
    Ultrasonics sonochemistry, 2013, Volume: 20, Issue:3

    The present work deals with the removal of Brilliant Green dye from wastewater using a poly(acrylic acid) hydrogel composite (PAA-K hydrogel) prepared by incorporation of kaoline clay. The composite has been synthesized using ultrasound assisted polymerization process as well as the conventional process, with an objective of showing the better effectiveness of ultrasound assisted synthesis. It has been observed that the hydrogel prepared by ultrasound assisted polymerization process showed better results. The optimum conditions for the removal of dye are pH of 7, temperature of 35°C, initial dye concentration of 30mg/L and hydrogel loading of 1g. The extent of removal of dye increased with an increase in the contact time and initial dye concentration. A pseudo-second-order kinetic model has been developed to explain the adsorption kinetics of dye on the PAA-K hydrogel. Thermodynamic and kinetic parameters indicate that the adsorption process is spontaneous in nature and the PAA-K hydrogel prepared by ultrasound process is a promising adsorbent compared to conventional process. The obtained adsorption data has also been fitted into commonly used adsorption isotherms and it has been found that Freundlich as well as Langmuir adsorption isotherm models fits well to the experimental results.

    Topics: Acrylic Resins; Adsorption; Hydrogels; Hydrogen-Ion Concentration; Kaolin; Kinetics; Quaternary Ammonium Compounds; Sonication; Temperature; Wastewater; Water Pollutants, Chemical; Water Purification

2013
Adsorption characteristics of brilliant green dye on kaolin.
    Journal of hazardous materials, 2009, Jan-15, Volume: 161, Issue:1

    Experimental investigations were carried out to adsorb toxic brilliant green dye from aqueous medium using kaolin as an adsorbent. Characterization of kaolin is done by measuring: (i) particle size distribution using particle size analyzer, (ii) BET surface area using BET surface analyzer, and (iii) structural analysis using X-ray diffractometer. The effects of initial dye concentration, contact time, kaolin dose, stirring speed, pH and temperature were studied for the adsorption of brilliant green in batch mode. Adsorption experiments indicate that the extent of adsorption is strongly dependent on pH of solution. Free energy of adsorption (DeltaG0), enthalpy (DeltaH0) and entropy (DeltaS0) changes are calculated to know the nature of adsorption. The calculated values of DeltaG0 at 299K and 323K indicate that the adsorption process is spontaneous. The estimated values of DeltaH0 and DeltaS0 both show the negative sign, which indicate that the adsorption process is exothermic and the dye molecules are organized on the kaolin surface in less randomly fashion than in solution. The adsorption kinetic has been described by first-order, pseudo-second-order and intra-particle-diffusion models. It was observed that the rate of dye adsorption follows pseudo-second-order model for the dye concentration range studied in the present case. Standard adsorption isotherms were used to fit the experimental equilibrium data. It was found that the adsorption of brilliant green on kaolin follows the Langmuir adsorption isotherm.

    Topics: Adsorption; Diffusion; Hydrogen-Ion Concentration; Kaolin; Kinetics; Models, Chemical; Models, Molecular; Molecular Structure; Quaternary Ammonium Compounds; Temperature; Time Factors

2009