kaolinite has been researched along with 10-10--dimethyl-9-9--biacridinium* in 2 studies
2 other study(ies) available for kaolinite and 10-10--dimethyl-9-9--biacridinium
Article | Year |
---|---|
Lucigenin chemiluminescence assay as an adjunctive tool for assessment of various stages of inflammation: a study of quiescent inflammatory cells.
A simple, fast, precise and biologically relevant toxicity assay for screening cytotoxicity of minerals would have distinct advantages due to its cost benefits and relative savings in time. Furthermore, a bioassay to differentiate acute and chronic in vivo pulmonary reactions could have potential value as predictors of fibrogenicity and pathogenicity. In this study we examined the potential use of lucigenin as a probe to evaluate the correlation between chemiluminescence (CL) generated by alveolar macrophages with the known cytotoxicity and patho genicity by conventional bioassays. In this study, we used small doses of dust (20 microg) to minimize cellular overload and to maintain homeostasis. Crystalline silica a highly fibrogenic dust was used as positive control and results are compared with those for bentonite, kaolin and talc. Among the three minerals compared with silica, bentonite was more reactive (27%) in CL assay and declined sharply compared to other minerals. This sudden decline in bentonite CL is caused by cytotoxicity leading to cell death. CL-induced by talc was comparable to silica and declines slowly. Kaolin on the other hand produced relatively a weaker (25%) CL compared to silica. Our data using relatively low doses of dust suggest that the CL assay may have a better predictive value in cytotoxicity evaluations compared to conventional toxicity assays. Topics: Acridines; Animals; Bentonite; Bronchoalveolar Lavage Fluid; Cell Survival; Cells, Cultured; Dust; Feasibility Studies; Inflammation; Kaolin; Kinetics; Luminescent Measurements; Macrophages, Alveolar; Male; Minerals; Models, Biological; Predictive Value of Tests; Quartz; Rats; Talc | 2003 |
In vitro biological effects of clay minerals advised as substitutes for asbestos.
We studied one sample of commercial sepiolite and two samples of commercial vermiculite--clay minerals proposed as replacements for asbestos--and tested in vitro their abilities to activate complement, to lyse erythrocytes, and to elicit the production of reactive oxygen species (ROS) with human polymorphonuclear leukocytes (PMN) or bovine alveolar macrophages (AM); their behavior was compared with that of asbestos fibers obtained from the Union International Contra Cancer (UICC) as reference standards, as well as with kaolinite and illite, main members of the clay mineral family. Since in short-term in vitro tests the biological activity of mineral particles seems especially related to the active sites on their surface, we first measured the specific surface area of each mineral. Sepiolite was unreactive in two of the three tests we used (complement activation and ROS production) and able to lyse a minimal percentage of red blood cells. Vermiculite was shown to be incapable of activating complement, to have a moderate hemolytic activity and a high ability to elicite ROS production, although lower than that of chrysotile. Sepiolite, therefore, might be of more interest than vermiculite, given the low level of biological effects detected during the tests used to compare both clay minerals with asbestos fibres. The ROS production does not seem to require phagocytosis. A high ROS production was observed with kaolinite: this result casts doubt on the ability of pathogenic mineral dusts in vitro to induce a greater release of ROS than nonpathogenic mineral dusts. Topics: Acridines; Aluminum Silicates; Animals; Antacids; Antidiarrheals; Asbestos; Asbestos, Crocidolite; Asbestos, Serpentine; Carcinogens; Cattle; Clay; Complement Activation; Dose-Response Relationship, Drug; Erythrocytes; Hemolysis; Humans; Kaolin; Linear Models; Luminescent Measurements; Luminol; Macrophages, Alveolar; Magnesium Silicates; Minerals; Neutrophils; Reactive Oxygen Species; Tetradecanoylphorbol Acetate; Zymosan | 1995 |