kaliotoxin and iberiotoxin

kaliotoxin has been researched along with iberiotoxin* in 5 studies

Other Studies

5 other study(ies) available for kaliotoxin and iberiotoxin

ArticleYear
NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP.
    British journal of pharmacology, 2001, Volume: 134, Issue:1

    1. In myometrial strips from near-term non-labouring human uterus, addition of oxytocin (OT) evoked dose-dependent (10 - 3000 nM) phasic contractions that were antagonized by atosiban (1 microM) and relaxed by addition of the nitric oxide donor S-nitroso L-cysteine (Cys-NO). In near-term labouring myometrium, however, addition of OT was ineffective at raising additional tone. 2. In both labouring and non-labouring tissue, Cys-NO mediated relaxation of spontaneous or OT-induced contractions (IC(50)=1 microM) was unaffected by prior addition of the guanylyl cyclase (GC) inhibitors ODQ (1H-[1,2,4]oxadiazolo[4,3,-alpha]quinoxalin-1-one; 1 microM), or methylene blue (MB; 10 microM). 3. Elevation of intracellular cyclic GMP accompanying 30 microM Cys-NO addition in non-labouring tissue (7.5 fold) or in labouring tissues (2.5 fold) was completely blocked in tissues that had been pre-treated with ODQ or MB. 4. Charybdotoxin (ChTx), iberiotoxin (IbTx) and kaliotoxin (KalTx) all shifted the Cys-NO inhibition curve to the right and reduced the degree of relaxation produced by maximal Cys-NO treatment (100 microM in non-labouring tissue; in labouring tissue, KalTx prevented Cys-NO mediated relaxation in both stimulated and unstimulated tissue. 5. Addition of the NO-donor S-nitroso N-acetyl penicillamine (SNAP) produced a dose-dependent relaxation of pregnant myometrium while 3-morpholinosyndonimine (SIN-1) did not. The failure of SIN-1 to relax OT-induced contractions was not due to a failure of the donor to stimulate myometrial GC. 6. We demonstrate that despite the ability of NO to stimulate myometrial GC in pregnant uterine muscle, relaxations are independent of cyclic GMP action. Effects of K(+)-channel inhibitors suggests that NO-induced relaxation in human uterine smooth muscle may be subserved by direct or indirect activation of one or more calcium-activated K(+)-channels.

    Topics: Charybdotoxin; Cyclic GMP; Cysteine; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Guanylate Cyclase; Humans; In Vitro Techniques; Labor, Obstetric; Molsidomine; Muscle Relaxation; Muscle, Smooth; Myometrium; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Oxadiazoles; Oxytocin; Penicillamine; Peptides; Pregnancy; Quinoxalines; S-Nitrosothiols; Scorpion Venoms; Time Factors; Uterus

2001
Effects of channel modulators on cloned large-conductance calcium-activated potassium channels.
    Molecular pharmacology, 1996, Volume: 50, Issue:1

    Through expression of the cloned mouse (mSlo) or human (hSlo) large-conductance (BK) Ca(2+)-activated K+ channel in Xenopus laevis oocytes and HEK 293 cells, we characterized the effects of reported blockers and openers of BK channels to initiate the study of the molecular determinants of BK channel modulation. In oocytes, iberiotoxin and charybdotoxin, peptidyl scorpion toxins, were both equally effective blockers of BK current, although iberiotoxin was significantly more potent than charybdotoxin. The structurally related peptide kaliotoxin was not a potent blocker of BK current. Paxilline, a fungal tremorgenic alkaloid, was an effective but complex blocker of BK current. Tetrandrine, a putative blocker of type II BK channels, and ketamine were relatively ineffective. The putative BK openers NS004 and NS1619, phloretin, niflumic acid, flufenamic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) increased BK current in oocytes at microM concentrations; many of these produced biphasic concentration-response relationships. Coapplication of representative blockers and openers revealed several patterns of interaction, including competitive and noncompetitive antagonism. NS1619, niflumic acid, and phloretin were tested by using excised inside-out membrane patches from HEK 293 cells and were found to increase the activity of hSlo BK channels and produce a leftward shift in the G/Gmax-versus-voltage relationship of these channels. These results represent the first comprehensive examination of the molecular pharmacology of BK channels.

    Topics: Alkaloids; Animals; Benzimidazoles; Benzylisoquinolines; Cell Line; Charybdotoxin; Chlorophenols; Cloning, Molecular; Female; Humans; Indoles; Kidney; Kinetics; Large-Conductance Calcium-Activated Potassium Channels; Membrane Potentials; Mice; Oocytes; Patch-Clamp Techniques; Peptides; Phloretin; Potassium Channels; Potassium Channels, Calcium-Activated; Recombinant Proteins; Scorpion Venoms; Xenopus laevis

1996
Ca(2+)-activated K+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins.
    The Journal of membrane biology, 1995, Volume: 147, Issue:1

    Despite recent progress in the molecular characterization of high-conductance Ca(2+)-activated K+ (maxi-K) channels, the molecular identities of intermediate conductance Ca(2+)-activated K+ channels, including that of mature erythrocytes, remains unknown. We have used various peptide toxins to characterize the intermediate conductance Ca(2+)-activated K+ channels (Gardos pathway) of human and rabbit red cells. With studies on K+ transport and on binding of 125I-charybdotoxin (ChTX) and 125I-kaliotoxin (KTX) binding in red cells, we provide evidence for the distinct nature of the red cell Gardos channel among described Ca(2+)-activated K+ channels based on (i) the characteristic inhibition and binding patterns produced by ChTX analogues, iberiotoxin (IbTX) and IbTX-like ChTX mutants, and KTX (1-37 and 1-38 variants); (ii) the presence of some properties heretofore attributed only to voltage-gated channels, including inhibition of K transport by margatoxin (MgTX) and by stichodactyla toxin (StK); (iii) and the ability of scyllatoxin (ScyTX) and apamin to displace bound 125I-charybdotoxin, a novel property for K+ channels. These unusual pharmacological characteristics suggest a unique structure for the red cell Gardos channel.

    Topics: Animals; Calcium; Charybdotoxin; Erythrocytes; Humans; In Vitro Techniques; Ion Transport; Kinetics; Neurotoxins; Peptides; Point Mutation; Potassium; Potassium Channel Blockers; Potassium Channels; Rabbits; Rubidium; Scorpion Venoms

1995
Kaliotoxin (1-37) shows structural differences with related potassium channel blockers.
    Biochemistry, 1994, Nov-29, Volume: 33, Issue:47

    The three-dimensional structure of kaliotoxin (1-37), KTX(1-37), a toxin from the scorpion Androctonus mauretanicus mauretanicus that blocks calcium-dependent potassium channels, has been determined by NMR. This toxin is homologous with other scorpion toxins such as charybdotoxin (ChTX) or iberiotoxin (IbTX) for which the structures are already known, but the presence of prolines in the expected alpha-helical region suggested that there may be some major difference in the structure of KTX that could be related to its different selectivity. Proline residues are also found in the homologous region of other scorpion toxins such as noxiustoxin or margatoxin. Our results indicate that KTX(1-37) contains the same sequence of secondary structure elements as ChTX but that the helical region is shorter and distorted due to the presence of two prolines. The distortion consists of a bending in the alpha-helix and in the presence of a 3(10) helix turn in the last three residues. Furthermore, the increased length of the extended structure preceding the helix favors a different packing of this part of the molecule with respect to the secondary structure elements. This change in folding modifies the accessibility of the conserved 27Lys which is known, from mutation studies, to be involved in channel blocking by ChTX.

    Topics: Amino Acid Sequence; Charybdotoxin; Magnetic Resonance Spectroscopy; Molecular Sequence Data; Peptide Fragments; Peptides; Potassium Channel Blockers; Proline; Protein Structure, Secondary; Protein Structure, Tertiary; Scorpion Venoms; Sequence Analysis; Sequence Homology

1994
Toxin pharmacology of the large-conductance Ca(2+)-activated K+ channel in the apical membrane of rabbit proximal convoluted tubule in primary culture.
    Pflugers Archiv : European journal of physiology, 1993, Volume: 425, Issue:1-2

    The patch-clamp technique was used to study the toxin pharmacology of the large-conductance Ca(2+)-activated K+ channel (BKCa) present in the apical membrane of rabbit proximal convoluted tubules (PCT) in primary culture. Experiments were performed with the inside-out configuration. This channel was very selective for K+ against Na+ and had a conductance of 180 pS with 140 mmol/l in the pipette and the bath. The action of toxins was studied on the extracellular side of the channel by using the pipette perfusion technique. Experimental conditions were 140 mmol/l KCl in the pipette and 140 mmol/l NaCl in the bath. Pipette potential was maintained at 0 mV. Perfusion of crude venom from Leiurus quinquestriatus hebraeus inhibited reversibly the open probability (Po) in a concentration-dependent fashion (IC50 = 0.8 mg/l; n = 3). The following synthetic or purified toxins were tested: synthetic charybdotoxin (ChTX) IC50 = 7.3 x 10(-9) M (n = 5); iberiotoxin (IbTX) IC50 = 5.5 x 10(-7) mol/l (n = 3); and kaliotoxin (KTX) IC50 = 4.8 x 10(-7) mol/l (n = 3). The suppression of the six first N-terminal amino-acids slightly reduced the affinity of ChTX (IC50 = 1.2 x 10(-8) mol/l, n = 4). Neither Dendroaspis polylepis venom nor purified alpha dendrotoxin modified Po even at high concentrations (20 mg/l and 10(-6) mol/l respectively). Apamin, which blocked the small-conductance K+ channel in cultured PCT, did not act on BKCa. These results indicate that ChTX is the most efficient known toxin against the epithelial BKCa in primary cultures of PCT.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Apamin; Calcium; Cell Line; Cell Membrane; Cells, Cultured; Charybdotoxin; Dogs; Elapid Venoms; Electric Conductivity; Kidney Tubules, Proximal; Male; Peptides; Potassium Channels; Potassium Chloride; Rabbits; Scorpion Venoms; Snake Venoms

1993