kainic acid has been researched along with 8-cyclopentyl-1,3-dimethylxanthine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (50.00) | 18.2507 |
2000's | 3 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Choi, DW; Lobner, D | 1 |
MacGregor, DG; Miller, WJ; Stone, TW | 1 |
Kitamura, Y; Matsuoka, Y; Ohta, S; Okazaki, M; Sekino, Y; Takata, K; Taniguchi, T | 1 |
Diamond, JS; Jahr, CE | 1 |
Hamilton, JB; Lancaster, DM; Patel, N; Pietersen, AN; Vreugdenhil, M | 1 |
6 other study(ies) available for kainic acid and 8-cyclopentyl-1,3-dimethylxanthine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Dipyridamole increases oxygen-glucose deprivation-induced injury in cortical cell culture.
Topics: Adenosine; Animals; Cell Death; Cells, Cultured; Cerebral Cortex; Dipyridamole; Glucose; Glutamates; Hypoxia, Brain; Kainic Acid; L-Lactate Dehydrogenase; Mice; N-Methylaspartate; Neuroglia; Neurons; Theophylline | 1994 |
Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.
Topics: Animals; Clonazepam; Hippocampus; Isoquinolines; Kainic Acid; Male; Neurons; Phenylisopropyladenosine; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, Purinergic P1; Theophylline | 1993 |
Endogenous adenosine protects CA1 neurons from kainic acid-induced neuronal cell loss in the rat hippocampus.
Topics: Adenosine; Animals; Apoptosis; Disease Models, Animal; Excitatory Amino Acid Agonists; Glial Fibrillary Acidic Protein; Hippocampus; Histocompatibility Antigens Class II; Injections, Intraventricular; Kainic Acid; Macrophage-1 Antigen; Male; Microtubule-Associated Proteins; Nerve Degeneration; Neuroglia; Neurons; Phosphorylation; Proto-Oncogene Proteins c-jun; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P1; Theophylline | 1999 |
Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation.
Topics: Amino Acid Transport System X-AG; Animals; Aspartic Acid; Astrocytes; ATP-Binding Cassette Transporters; Biological Transport; Cells, Cultured; Drug Synergism; Electric Stimulation; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Patch-Clamp Techniques; Purinergic P1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Metabotropic Glutamate; Receptors, Purinergic P1; Synapses; Synaptic Transmission; Theophylline | 2000 |
Modulation of gamma oscillations by endogenous adenosine through A1 and A2A receptors in the mouse hippocampus.
Topics: Adenosine; Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Antagonists; Analysis of Variance; Animals; Biological Clocks; Dose-Response Relationship, Drug; Evoked Potentials; Excitatory Amino Acid Agonists; Fourier Analysis; Hippocampus; Hypoxia; In Vitro Techniques; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Phenethylamines; Receptor, Adenosine A1; Receptor, Adenosine A2A; Theophylline; Thioinosine; Time Factors; Triazines; Triazoles | 2009 |