Page last updated: 2024-08-21

kainic acid and 8-cyclopentyl-1,3-dimethylxanthine

kainic acid has been researched along with 8-cyclopentyl-1,3-dimethylxanthine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (50.00)18.2507
2000's3 (50.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Choi, DW; Lobner, D1
MacGregor, DG; Miller, WJ; Stone, TW1
Kitamura, Y; Matsuoka, Y; Ohta, S; Okazaki, M; Sekino, Y; Takata, K; Taniguchi, T1
Diamond, JS; Jahr, CE1
Hamilton, JB; Lancaster, DM; Patel, N; Pietersen, AN; Vreugdenhil, M1

Other Studies

6 other study(ies) available for kainic acid and 8-cyclopentyl-1,3-dimethylxanthine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Dipyridamole increases oxygen-glucose deprivation-induced injury in cortical cell culture.
    Stroke, 1994, Volume: 25, Issue:10

    Topics: Adenosine; Animals; Cell Death; Cells, Cultured; Cerebral Cortex; Dipyridamole; Glucose; Glutamates; Hypoxia, Brain; Kainic Acid; L-Lactate Dehydrogenase; Mice; N-Methylaspartate; Neuroglia; Neurons; Theophylline

1994
Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.
    British journal of pharmacology, 1993, Volume: 110, Issue:1

    Topics: Animals; Clonazepam; Hippocampus; Isoquinolines; Kainic Acid; Male; Neurons; Phenylisopropyladenosine; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, GABA-A; Receptors, Purinergic P1; Theophylline

1993
Endogenous adenosine protects CA1 neurons from kainic acid-induced neuronal cell loss in the rat hippocampus.
    The European journal of neuroscience, 1999, Volume: 11, Issue:10

    Topics: Adenosine; Animals; Apoptosis; Disease Models, Animal; Excitatory Amino Acid Agonists; Glial Fibrillary Acidic Protein; Hippocampus; Histocompatibility Antigens Class II; Injections, Intraventricular; Kainic Acid; Macrophage-1 Antigen; Male; Microtubule-Associated Proteins; Nerve Degeneration; Neuroglia; Neurons; Phosphorylation; Proto-Oncogene Proteins c-jun; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P1; Theophylline

1999
Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation.
    Journal of neurophysiology, 2000, Volume: 83, Issue:5

    Topics: Amino Acid Transport System X-AG; Animals; Aspartic Acid; Astrocytes; ATP-Binding Cassette Transporters; Biological Transport; Cells, Cultured; Drug Synergism; Electric Stimulation; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Patch-Clamp Techniques; Purinergic P1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Metabotropic Glutamate; Receptors, Purinergic P1; Synapses; Synaptic Transmission; Theophylline

2000
Modulation of gamma oscillations by endogenous adenosine through A1 and A2A receptors in the mouse hippocampus.
    Neuropharmacology, 2009, Volume: 56, Issue:2

    Topics: Adenosine; Adenosine A1 Receptor Antagonists; Adenosine A2 Receptor Antagonists; Analysis of Variance; Animals; Biological Clocks; Dose-Response Relationship, Drug; Evoked Potentials; Excitatory Amino Acid Agonists; Fourier Analysis; Hippocampus; Hypoxia; In Vitro Techniques; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Phenethylamines; Receptor, Adenosine A1; Receptor, Adenosine A2A; Theophylline; Thioinosine; Time Factors; Triazines; Triazoles

2009