kaempferol-3-o-rhamnoside has been researched along with hyperoside* in 4 studies
4 other study(ies) available for kaempferol-3-o-rhamnoside and hyperoside
Article | Year |
---|---|
Simultaneous Enrichment and Separation of Four Flavonoids from Zanthoxylum bungeanum Leaves by Ultrasound-Assisted Extraction and Macroporous Resins with Evaluation of Antioxidant Activities.
Quercitrin, hyperoside, rutin, and afzelin are the dominant flavonoids compounds from Zanthoxylum bungeanum leaves, and they play major roles in the antioxidant activity. Macroporous adsorption resin (MAR) treatment, a simple, low-cost and efficient method, was combined with ultrasound-assisted extraction (UAE) to enrich and purify these four flavonoids from Z. bungeanum leaves efficiently. The optimal conditions for UAE based on Response Surface Methodology (RSM) were determined to be an ethanol concentration of 60%, leaves size of 40 mesh, temperature of 50 °C and ultrasonic power of 400 W with four flavonoids contents of 120.84 mg/g. After the extraction process, five kinds of MARs (D4020, D-101, NKA-9, AB-8, and X-5) were tested through static adsorption/desorption to enrich and purify the ultrasonic-assisted extracts, and D-101 was selected as the most suitable resin. The optimal adsorption conditions were 5 bed volumes (BV) of sample solution with an initial concentration of 7.5 mg/mL and pH 5.0. Meanwhile, the optimal desorption parameters were 5 BV each of deionized water and 30% ethanol, then 10 BV 70% ethanol, and a flow rate of 2 BV/hr. Under the optimized conditions, the contents of quercitrin, hyperoside, rutin, and afzelin increased by 276.39%, 187.46%, 221.81%, and 288.45%, respectively, and the recovery yields were 85.47%, 73.53%, 81.35%, and 65.06%. In addition, laboratory preparative-scale separation indicated that the preparative separation of four flavonoids was feasible and easy. Moreover, the antioxidant activities of the purified products were significantly increased after enrichment. In conclusion, all of the results indicated that these methods are highly efficient, low cost, environmentally friendly and easy to scale up.. This study provided an environmentally friendly, rapid, and highly productive method for the extraction and purification of four active compounds from Zanthoxylum bungeanum leaves. The results can be used for the utilization of Z. bungeanum leaves as a kind of food supplement in an industrial setting. Topics: Adsorption; Flavonoids; Mannosides; Plant Extracts; Plant Leaves; Proanthocyanidins; Quercetin; Resins, Synthetic; Rutin; Ultrasonics; Zanthoxylum | 2018 |
Quality evaluation of the leaves of Magnolia officinalis var. biloba using high-performance liquid chromatography fingerprint analysis of phenolic compounds.
The high-performance liquid chromatography fingerprint method is a simple and reliable technique to evaluate the quality of leaves of Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. We used the following bioactive phenolic constituents as reference compounds: rutin, afzelin, hyperoside, isoquercitrin, quercetin-3-O-α-l-rhamnoside, honokiol and magnolol. The conditions of an Agilent 1200 HPLC were: YMC-Pack-ODS-AQ column (250 × 4.6 mm id S-5 μm, 12 nm), mobile phase acetonitrile and 0.2% phosphoric acid in a gradient elute mode, flow rate 1.0 mL/min, detection wavelength 280 nm and column temperature 30°C. The analytical method was validated in terms of linearity, stability, repeatability, precision and recovery tests. While performing fingerprint analysis, we identified 11 peaks as characteristic peaks and assessed the similarities of 17 samples collected from different geological regions of China. The peak areas were used to evaluate the variation in the chemical composition of the tested samples. For this purpose, we performed hierarchical cluster analysis of the peak areas. Our results indicate that simultaneous determination of multiple ingredients could be done through chromatographic fingerprint analysis. Therefore, this high-performance liquid chromatography fingerprint method was readily utilized to evaluate the quality of leaves of M. officinalis var.biloba, which are used in several traditional herbal preparations. Topics: Biphenyl Compounds; China; Chromatography; Chromatography, High Pressure Liquid; Glucosides; Lignans; Magnolia; Mannosides; Phenols; Plant Extracts; Plant Leaves; Proanthocyanidins; Quercetin; Reference Values; Reproducibility of Results; Rutin; Temperature | 2016 |
Extraction and Purification of Quercitrin, Hyperoside, Rutin, and Afzelin from Zanthoxylum Bungeanum Maxim Leaves Using an Aqueous Two-Phase System.
In this study, an aqueous two-phase system (ATPS) based on ethanol/NaH2 PO4 was developed for the extraction and purification of quercitrin, hyperoside, rutin, and afzelin from Zanthoxylum bungeanum Maxim leaves. These 4 flavonoids were 1st extracted from dried Z. bungeanum leaves using a 60% ethanol solution and subsequently added to the ATPS for further purification. The partition behavior of the 4 flavonoids in ATPS was investigated. The optimal ATPS conditions were: 29% (w/w) NaH2 PO4 , 25% (w/w) ethanol concentration, 1% (w/w) added amount of leaf extracts, no pH adjustment, and repeated 1 h extractions at 25 °C. Under the optimal conditions for the 10 g ATPS, the absolute recovery of quercitrin, hyperoside, rutin, and afzelin reached 90.3%, 83.5%, 92.3%, and 89.1%, respectively. Compared to the 60% ethanol extracts, the content of quercitrin (44.8 mg/g), hyperoside (65.6 mg/g), rutin (56.4 mg/g), and afzelin (6.84 mg/g) in the extracts increased by 49.9%, 38.8%, 45.6%, and 36.8% respectively. The extracts after ATPS also exhibited stronger antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl IC50 value (10.5 μg/mL) decreased by 41.8%, and the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt value (966 μmol Trolox/g) and ferric reducing power value (619 μmol Trolox/g) increased by 29.8% and 53.7%, respectively. Furthermore, scale-up experiments indicated that a larger scale experiment was feasible for the purification of the 4 flavonoids. Topics: Antioxidants; Benzothiazoles; Biphenyl Compounds; Flavonoids; Mannosides; Oxidation-Reduction; Picrates; Plant Extracts; Plant Leaves; Proanthocyanidins; Quercetin; Rutin; Sulfonic Acids; Water; Zanthoxylum | 2016 |
Flavonoids from the aerial parts of Houttuynia cordata attenuate lung inflammation in mice.
The aerial parts of Houttuynia cordata used for treating inflammation-related disorders contain flavonoids as major constituents. Since certain flavonoids possess anti-inflammatory activity, especially in the lung, the pharmacological activities of H. cordata and the flavonoid constituents were evaluated using in vitro and in vivo models of lung inflammation. The 70 % ethanol extract of the aerial parts of H. cordata inhibited the production of inflammatory biomarkers IL-6 and NO in lung epithelial cells (A549) and alveolar macrophages (MH-S), respectively. And the same plant material, administered orally (100 and 400 mg/kg), significantly inhibited lung inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced acute lung injury. From the extract, major flavonoids including afzelin, hyperoside and quercitrin were successfully isolated and they also attenuated LPS-induced lung inflammation in mice by oral administration. In particular, quercitrin showed most potent activity at 100 mg/kg. These results demonstrate for the first time that H. cordata and three flavonoid constituents have a therapeutic potential for treating lung inflammatory disorders. Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; Epithelial Cells; Flavonoids; Houttuynia; Humans; Interleukin-6; Lipopolysaccharides; Macrophages, Alveolar; Male; Mannosides; Mice; Nitric Oxide; Phytotherapy; Plant Components, Aerial; Plant Extracts; Pneumonia; Proanthocyanidins; Quercetin | 2015 |