jzl-184 has been researched along with 1-6-bis(cyclohexyloximinocarbonyl)hexane* in 4 studies
4 other study(ies) available for jzl-184 and 1-6-bis(cyclohexyloximinocarbonyl)hexane
Article | Year |
---|---|
Fatty acid amide hydrolase (FAAH) inhibitor PF-3845 reduces viability, migration and invasiveness of human colon adenocarcinoma Colo-205 cell line: an in vitro study.
Earlier reports suggest that the endocannabinoids may play a role of endogenous tumor growth modulators. In this study, we investigated whether inhibition of the enzymes involved in the synthesis and degradation of endocannabinoids may reduce colorectal cancer cell invasion and migration. The human colon adenocarcinoma Colo-205 cells were incubated with PF-3845, JZL-184 and RHC-80267 (fatty acid amide hydrolase (FAAH), mono- (MAGL) and diacylglycerol lipase (DAGL) inhibitors, respectively) for 48 h. The MTT colorimetric assay was performed to quantify cell viability. Next, Colo-205 cells were incubated with PF-3845 alone or with PF-3845 together with selected antagonists: AM 251, AM 630, SB 366791, RN 1734 and G-15 (CB Topics: Adenocarcinoma; Amidohydrolases; Antineoplastic Agents; Benzodioxoles; Cell Line, Tumor; Cell Movement; Cell Survival; Colonic Neoplasms; Cyclohexanones; Enzyme Inhibitors; Humans; Piperidines; Pyridines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2017 |
Modulation of the endocannabinoid system by the fatty acid amide hydrolase, monoacylglycerol and diacylglycerol lipase inhibitors as an attractive target for secretory diarrhoea therapy.
Secretory diarrhoea is a leading cause of mortality and morbidity worldwide. Our aim was to characterize the effect of inhibition of selected enzymes involved in the synthesis or degradation of endocannabinoids on electrolyte equilibrium in the mouse colonic tissue. The aim of this study was to evaluate the effects of PF-3845, JZL-184 and RHC-80267, as inhibitors of fatty acid amide hydrolase (FAAH), monoacylglycerol (MAGL) and diacylglycerol lipase (DAGL), respectively on epithelial ion transport in isolated mouse colon stimulated by forskolin (FSK), veratridine (VER) and bethanechol (BET). Next, colonic tissue was co-incubated with selected inhibitors and cannabinoid receptor antagonists: AM 251 and AM 630 (CB Topics: Amidohydrolases; Animals; Benzodioxoles; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cyclohexanones; Diarrhea; Endocannabinoids; Enzyme Inhibitors; Indoles; Lipoprotein Lipase; Male; Mice; Monoglycerides; Piperidines; Pyrazoles; Pyridines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2017 |
Disease-modifying effects of RHC80267 and JZL184 in a pilocarpine mouse model of temporal lobe epilepsy.
Patients with temporal lobe epilepsy (TLE) often suffer from comorbid psychiatric diagnoses such as depression, anxiety, or impaired cognitive performance. Endocannabinoid (eCB) signaling is a key regulator of synaptic neurotransmission and has been implicated in the mechanisms of epilepsy as well as several mood disorders and cognitive impairments.. We employed a pilocarpine model of TLE in C57/BJ mice to investigate the role of eCB signaling in epileptogenesis and concomitant psychiatric comorbidities.. We sought to alter the neuronal levels of a known eCB receptor ligand, 2-arachidonylglycerol (2-AG), through the use of RHC80267 or JZL184. Pilocarpine-treated mice were treated with RHC80267 (1.3 μmol) or JZL184 (20 mg/kg) immediately after the termination of status epilepticus (SE), which was followed by daily treatment for the next 7 days. Our results indicated that RHC80267 treatment significantly reduced the percentage of mice suffering from spontaneous recurrent seizures (SRS) in addition to decreasing the duration of observed seizures when compared to vehicle treatment. Furthermore, RHC80267 attenuated depression and anxiety-related behaviors, improved previously impaired spatial learning and memory, and inhibited seizure-induced hippocampal neuronal loss during the chronic epileptic period. In contrast, JZL184 administration markedly increased the frequency and the duration of observed SRS, enhanced the previously impaired neuropsychological performance, and increased hippocampal damage following SE.. These findings suggest that RHC80267 treatment after the onset of SE could result in an amelioration of the effects found during the chronic epileptic period and yield an overall decrease in epileptic symptoms and comorbid conditions. Thus, alterations to endocannabinoid signaling may serve as a potential mechanism to prevent epileptogenesis and manipulation of this signaling pathway as a possible drug target. Topics: Animals; Anticonvulsants; Benzodioxoles; Cyclohexanones; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Exploratory Behavior; Hindlimb Suspension; Hippocampus; Male; Maze Learning; Mice; Mice, Inbred C57BL; Neurodegenerative Diseases; Piperidines | 2014 |
Brain phospholipase C, diacylglycerol lipase and monoacylglycerol lipase are involved in (±)-epibatidine-induced activation of central adrenomedullary outflow in rats.
We previously reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a potent agonist of nicotinic acetylcholine receptors) (1, 5 and 10 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and adrenaline and that this response was reduced by i.c.v. administered indomethacin (cyclooxygenase inhibitor) and abolished by bilateral adrenalectomy, indicating the involvement of brain arachidonic acid, as a substrate of cyclooxygenase, in this alkaloid-induced secretion of both catecholamines from the adrenal medulla in rats. Arachidonic acid is mainly released by the action of phospholipase A(2), but is also released by a phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway. In the present study, (±)-epibatidine (5 nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was not influenced by pretreatment with mepacrine (phospholipase A(2) inhibitor) (1.1 and 2.2 μmol/animal, i.c.v.), but was effectively reduced by pretreatment with U-73122 (1-[6-[[(17 β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (phospholipase C inhibitor) (10 and 30 nmol/animal, i.c.v.), RHC-80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] (diacylglycerol lipase inhibitor) (1.3 and 2.6 μmol/animal, i.c.v.), MAFP (methyl arachidonoyl fluorophosphonate) (monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.) or JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] (selective monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.). Immunohistochemical studies demonstrated that (±)-epibatidine (10 nmol/animal, i.c.v.) activates spinally projecting neurons expressing monoacylglycerol lipase in the rat hypothalamic paraventricular nucleus, a control center of central sympatho-adrenomedullary outflow. Taken together, the brain phospholipase C-, diacylglycerol lipase- and monoacylglycerol lipase-mediated pathway seems to be involved in the centrally administered (±)-epibatidine-induced activation of central adrenomedullary outflow in rats. Topics: Adrenal Medulla; Animals; Arachidonic Acids; Benzodioxoles; Brain; Bridged Bicyclo Compounds, Heterocyclic; Catecholamines; Cyclohexanones; Esterases; Estrenes; Lipoprotein Lipase; Male; Monoacylglycerol Lipases; Neurons; Nicotinic Agonists; Organophosphonates; Paraventricular Hypothalamic Nucleus; Piperidines; Pyridines; Pyrrolidinones; Rats; Rats, Wistar; Type C Phospholipases | 2012 |