jwh-133 and cobaltiprotoporphyrin

jwh-133 has been researched along with cobaltiprotoporphyrin* in 1 studies

Other Studies

1 other study(ies) available for jwh-133 and cobaltiprotoporphyrin

ArticleYear
The Inhibitory Effects of Cobalt Protoporphyrin IX and Cannabinoid 2 Receptor Agonists in Type 2 Diabetic Mice.
    International journal of molecular sciences, 2017, Oct-28, Volume: 18, Issue:11

    The activation of the transcription factor Nrf2 inhibits neuropathy and modulates the activity of delta-opioid receptors (DOR) in type 2 diabetic mice but the impact of Nrf2/HO-1 pathway on the antinociceptive actions of cannabinoid 2 receptors (CB2R) has not been assessed. Using male mice BKS.Cg-m+/+Leprdb/J (db/db) we investigated if treatment with cobalt protoporphyrin IX (CoPP), an HO-1 inductor, inhibited mechanical allodynia, hyperglycemia and obesity associated to type 2 diabetes. The antinociceptive effects of JWH-015 and JWH-133 (CB2R agonists) administered with and without CoPP or sulforaphane (SFN), a Nrf2 transcription factor activator, have been also evaluated. The expression of Nrf2, HO-1, NAD(P)H: quinone oxidoreductase 1 (NQO1) and c-Jun N-terminal kinase (JNK) in sciatic nerve and that of the CB2R on the dorsal root ganglia from animals treated with CoPP and/or SFN were assessed. CoPP treatment inhibited allodynia, hyperglycemia and body weight gain in db/db mice by enhancing HO-1/NQO1 levels and reducing JNK phosphorylation. Both CoPP and SFN improved the antiallodynic effects of JWH-015 and JWH-133 and expression of CB2R in db/db mice. Therefore, we concluded that the activation of antioxidant Nrf2/HO-1 pathway potentiate the effects of CB2R agonists and might be suitable for the treatment of painful neuropathy linked to type 2 diabetes.

    Topics: Animals; Blood Glucose; Body Weight; Cannabinoid Receptor Agonists; Cannabinoids; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Ganglia, Spinal; Heme Oxygenase-1; Hyperalgesia; Male; Mice; Mice, Transgenic; NF-E2-Related Factor 2; Protoporphyrins; Receptor, Cannabinoid, CB2; Sciatic Nerve

2017