jhw-015 has been researched along with 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol* in 11 studies
11 other study(ies) available for jhw-015 and 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol
Article | Year |
---|---|
Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure.
The effects of cannabinoids in mitochondria after acute oxidative stress insult are not fully established. We investigated the ability of CP55,940 and JWH-015 to scavenge reactive oxygen species and their effect on mitochondria permeability transition (MPT) in either a mitochondria-free superoxide anion generation system, intact rat brain mitochondria or in sub-mitochondrial particles (SMP) treated with paraquat (PQ). Oxygen consumption, mitochondrial membrane potential (Deltapsi(m)) and MPT were determined as parameters of mitochondrial function. It is found that both cannabinoids effectively attenuate mitochondrial damage against PQ-induced oxidative stress by scavenging anion superoxide radical (O(2)(*-)) and hydrogen peroxide (H(2)O(2)), maintaining Deltapsi(m) and by avoiding Ca(2+)-induced mitochondrial swelling. Understanding the mechanistic action of cannabinoids on mitochondria might provide new insights into more effective therapeutic approaches for oxidative stress related disorders. Topics: Analgesics; Animals; Calcium; Cannabinoids; Cerebral Cortex; Cyclohexanols; Herbicides; Hydrogen Peroxide; Indoles; Membrane Potential, Mitochondrial; Mitochondria; Molecular Structure; Neuroprotective Agents; Oxidants; Paraquat; Rats; Superoxides | 2010 |
Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury.
Cannabinoids induce analgesia by acting on cannabinoid receptor (CBR) types 1 and/or 2. However, central nervous system side effects and antinociceptive tolerance from CBR1 limit their clinical use. CBR2 exist on spinal glia and perivascular cells, suggesting an immunoregulatory role of these receptors in the central nervous system. Previously, the authors showed that spinal CBR2 activation reduces paw incision hypersensitivity and glial activation. This study tested whether CBR2 are expressed in glia and whether their activation would induce antinociception, glial inhibition, central side effects, and antinociceptive tolerance in a neuropathic rodent pain model.. Rats underwent L5 spinal nerve transection or sham surgery, and CBR2 expression and cell localization were assessed by immunohistochemistry. Animals received intrathecal injections of CBR agonists and antagonists, and mechanical withdrawal thresholds and behavioral side effects were assessed.. Peripheral nerve transection induced hypersensitivity, increased expression of CR3/CD11b and CBR2, and reduced ED2/CD163 expression in the spinal cord. The CBR2 were localized to microglia and perivascular cells. Intrathecal JWH015 reduced peripheral nerve injury hypersensitivity and CR3/CD11b expression and increased ED2/CD163 expression in a dose-dependent fashion. These effects were prevented by intrathecal administration of the CBR2 antagonist (AM630) but not the CBR1 antagonist (AM281). JWH015 did not cause behavioral side effects. Chronic intrathecal JWH015 treatment did not induce antinociceptive tolerance.. These data indicate that intrathecal CBR2 agonists may provide analgesia by modulating the spinal immune response and microglial function in chronic pain conditions without inducing tolerance and neurologic side effects. Topics: Animals; Behavior, Animal; Cyclohexanols; Drug Tolerance; Indoles; Male; Microglia; Oligodendroglia; Pain Measurement; Peripheral Nerve Injuries; Peripheral Nerves; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Spinal Cord | 2008 |
The orphan receptor GPR55 is a novel cannabinoid receptor.
The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes.. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways.. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1.. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s). Topics: Amino Acid Sequence; Animals; Arachidonic Acids; Binding Sites; Binding, Competitive; Cannabidiol; Cannabinoids; Cell Line; Cloning, Molecular; Cyclohexanols; Down-Regulation; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Ligands; Mice; Molecular Sequence Data; Organ Specificity; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; RNA, Messenger; Signal Transduction; Structure-Activity Relationship | 2007 |
Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision.
Cannabinoids bind to cannabinoid receptors type 1 and 2 and produce analgesia in several pain models, but central side effects from cannabinoid 1 receptors limit their clinical use. Cannabinoid 2 receptors reduce inflammatory responses in the periphery by acting on immune cells, and they are present on glia in the central nervous system. This study tested whether spinal cannabinoid activation would induce analgesia, glial inhibition, and central side effects in a postoperative model or incisional pain.. Rats underwent paw incision surgery, with intrathecal injections of cannabinoid agonists and antagonists and assessment of withdrawal thresholds and behavioral side effects. Spinal glial activation was determined by immunohistochemistry.. Intrathecal administration CP55940 reduced postoperative hypersensitivity (91 +/- 9% maximum possible effect; P < 0.05), and this was prevented by intrathecal administration of both cannabinoid 1 receptor (AM281) and cannabinoid 2 receptor (AM630) antagonists. CP55940 also caused several behavioral side effects, and these were prevented by the cannabinoid 1 receptor but not by the cannabinoid 2 receptor antagonist. Intrathecal injection of the cannabinoid 2 receptor agonist JWH015 reversed postoperative hypersensitivity (89 +/- 5% maximum possible effect; P < 0.05), and this was reversed by the cannabinoid 2 but not by the cannabinoid 1 receptor antagonist. JWH015, which did not induce behavioral side effects, reduced paw incision induced microglial and astrocytic activation in spinal cord (P < 0.05).. These data indicate that intrathecal administration of cannabinoid receptor agonists may provide postoperative analgesia while reducing spinal glial activation, and that selective cannabinoid 2 receptor agonists may do so without central side effects. Topics: Animals; Cyclohexanes; Cyclohexanols; Indoles; Male; Neuroglia; Pain, Postoperative; Phenols; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Reflex; Spinal Cord | 2007 |
Sch35966 is a potent, selective agonist at the peripheral cannabinoid receptor (CB2) in rodents and primates.
The peripheral cannabinoid receptor (CB(2)) is expressed on peripheral immune cells and is thought to have a role in the immunosuppressive effects of cannabinoids. Historically, there have been few potent, CB(2)-selective agonists to assess the contribution of CB(2) to this phenomenon. The studies presented here describe the synthesis of 8,10-bis[(2,2-dimethyl-1-oxopropyl)oxy]-11-methyl-1234-tetrahydro-6H-benzo[beta]quinolizin-6-one (Sch35966), which binds with low nanomolar potency to CB(2) in both primates and rodents.. The affinity, potency and efficacy of Sch35966 and other cannabinoid ligands at CB(2) was assessed using competition binding assays vs [(3)H]CP55,940, [(35)S]GTPgammaS exchange, cAMP accumulation and cell chemotaxis assays.. We showed that Sch35966 has >450-fold selectivity for CB(2) binding vs the central cannabinoid receptor (CB(1)) in primates (humans and cynomolgus monkeys) and rodents (rats and mice). Sch35966 is an agonist as it effectively inhibited forskolin-stimulated cAMP synthesis in CHO-hCB(2) cells, stimulated [(35)S]GTPgammaS exchange and directed chemotaxis in cell membranes expressing CB(2). In all species examined, Sch35966 was more potent, more efficacious and more selective than JWH-015 (a commonly used CB(2)-selective agonist).. Taken together, the data show that Sch35966 is a potent and efficacious CB(2)-selective agonist in rodents and primates. Topics: Animals; Binding, Competitive; Cell Membrane; Chemotaxis; CHO Cells; Cricetinae; Cricetulus; Cyclic AMP; Cyclohexanols; Dronabinol; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Indoles; Macaca fascicularis; Mice; Quinolizines; Rats; Receptor, Cannabinoid, CB2; Species Specificity | 2007 |
Cannabinoid receptor CB2 modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes.
Cannabinoids have been shown to influence the immune system. However, their immunomodulatory effects have not been extensively studied. In this investigation, we have observed that both primary and Jurkat T cells express a functional cannabinoid receptor 2 (CB(2)). Furthermore, both the synthetic cannabinoids CP55,940 and WIN55,212-2, as well as the CB(2)-selective agonist JWH-015, caused a significant inhibition of the chemokine CXCL12-induced and CXCR4-mediated chemotaxis of Jurkat T cells, as well as their transendothelial migration. Involvement of the CB(2) receptor was further confirmed by partial reversal of the inhibition using the CB(2)-specific antagonist, AM630. Similarly, CP55,940 and JWH-015 inhibited the CXCL12-induced chemotaxis of primary CD4(+) and CD8(+) T lymphocytes. Further investigation of signaling studies to delineate the mechanism of inhibition revealed that cannabinoids enhance CXCL12-induced p44/42 MAP kinase activity. However, enhanced MAP kinase activity was not responsible for the inhibition of chemotaxis. This suggests that cannabinoids differentially regulate CXCR4-mediated migration and MAP kinase activation in T cells. Cannabinoids were also found to downregulate the PMA-enhanced enzyme activity of matrix metalloproteinase-9, which is known to play an important role in transendothelial migration. This study provides novel information regarding cannabinoid modulation of functional effects in T cells. Topics: Calcium; Cannabinoids; Chemokine CXCL12; Chemokines, CXC; Chemotaxis, Leukocyte; Cyclohexanes; Cyclohexanols; Endothelium, Vascular; Humans; Immunosuppressive Agents; Indoles; Jurkat Cells; Matrix Metalloproteinase Inhibitors; Mitogen-Activated Protein Kinases; Phenols; Receptor, Cannabinoid, CB2; Receptors, CXCR4; Signal Transduction; T-Lymphocytes; Umbilical Veins | 2006 |
Avoidance of Abeta[(25-35)] / (H(2)O(2)) -induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanisms: role of NF-kappaB and p53.
Cannabinoids have been suggested as potential neuroprotective compounds in Alzheimer's disease (AD). Despite intense investigation, the detailed intracellular mechanism(s) involved in cannabinoids survival effect remains to be elucidated. The present study shows that CP55,940 (a CB1 and CB2 agonist) and JWH-015 (a CB2 agonist) protect and rescue peripheral blood lymphocytes (PBL) from (10 microM) Abeta[(25-35)] and (50 microM) H(2)O(2)-induced apoptosis by two alternative mechanisms: (1) receptor-independent pathway, as demonstrated by no-dihydrorhodamine oxidation into fluorescent rhodamine 123 (R-123) as a result of cannabinoid inhibition of Abeta-generated H(2)O(2); (2) receptor-dependent pathway through NF-kappaB activation and p53 down regulation involving phosphoinositide 3-kinase (PI-3K), as demonstrated by using either (25 microM) LY294002 (a PI-3K inhibitor), (50 nM) pifithrin-alpha (PFT, a specific p53 inhibitor) or by using immunocytochemistry detection of NF-kappaB and p53 transcription factors activation. Importantly, cannabinoid agonists and PFT were able to protect and rescue lymphocytes pre-exposed to toxicants-, even when the three compounds were added up-to 12 h post-Abeta[(25-35)]/(H(2)O(2)) exposure. These results suggest that CP55,940/( JWH-015) protection/rescue of PBL from noxious stimuli is determined by p53 inactivation. These findings may contribute to a better understanding of the role played by cannabinoids as neuroprotective agents to target and interrupt molecular signaling that induce damage in AD disorder. Topics: Adult; Amyloid beta-Peptides; Apoptosis; Cannabinoids; Cyclohexanes; Cyclohexanols; Cytoprotection; Humans; Hydrogen Peroxide; Indoles; Lymphocytes; Male; NF-kappa B; Peptide Fragments; Phenols; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Receptors, Cannabinoid; Tumor Suppressor Protein p53 | 2006 |
Characterization of cannabinoid modulation of sensory neurotransmission in the rat isolated mesenteric arterial bed.
The present study investigated the effects of different classes of cannabinoid (CB) receptor ligands on sensory neurotransmission in the rat isolated mesenteric arterial bed. Electrical field stimulation of the mesenteric bed evoked frequency-dependent vasorelaxation due to the activation of capsaicin-sensitive sensory nerves and release of calcitonin gene-related peptide (CGRP). The CB(1)/CB(2) cannabinoid agonists WIN55,212 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone] and CP55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol] (0.01-1 microM) attenuated sensory neurogenic relaxation in a concentration-dependent manner. At 0.1 microM, WIN55,212 and CP55,940 were largely ineffective in the presence of the CB(1) antagonists SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichloro phenyl)-4-methyl-3-pyrazole-carboxamide] and LY320135 [[6-methoxy-2-(4-methoxyphenyl)benzo[b]-thien-3-yl][4-cyanophenyl] methanone] (1 microM), but their inhibitory actions remained in the presence of the CB(2)-selective antagonist SR144528 [N-[1S)-endo-1,3,3,-trimetyl bicyclo [2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide] (1 microM). The CB(1)/CB(2) agonist Delta(9)-tetrahydrocannabinol (THC) (1 microM) attenuated sensory neurogenic relaxations, as did the CB(2) agonist JWH-015 [(2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone]. The inhibitory actions of both THC and JWH-015 were still evident in the presence of SR141716A (1 microM) and SR144528 (1 microM). None of the cannabinoid agonists investigated had an effect on vasorelaxation elicited by exogenous CGRP, indicating a prejunctional mechanism. These data demonstrate that different classes of cannabinoid agonists attenuate sensory neurotransmission via a prejunctional site and provide evidence for mediation by a CB(1) and/or a non-CB(1)/CB(2) receptor. Topics: Animals; Benzofurans; Benzoxazines; Calcitonin Gene-Related Peptide; Camphanes; Cannabinoids; Capsaicin; Cyclohexanols; Dronabinol; Electric Stimulation; Indoles; Male; Mesenteric Arteries; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptors, Cannabinoid; Rimonabant; Vasodilation | 2004 |
Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors.
Pharmacological effects of cannabinoid ligands are thought to be mediated through cannabinoid CB1 and CB2 receptor subtypes. Sequence analysis revealed that rat and human cannabinoid CB2 receptors are divergent and share 81% amino acid homology. Pharmacological analysis of the possible species differences between rat and human cannabinoid CB2 receptors was performed using radioligand binding and functional assays. Pronounced species selectivity at the rat cannabinoid CB2 receptor (50- to 140-fold) was observed with AM-1710 (3-(1,1-Dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo[c]chromen-6-one) and AM-1714 (3-(1,1-Dimethyl-heptyl)-1-9-dihydroxy-benzo[c]chromen-6-one). In contrast, JWH-015 ((2-Methyl-1-propyl-1H-indol-3-yl)-napthalen-1-yl-methanone) was 3- to 10-fold selective at the human cannabinoid CB2 receptor. Endocannabinoid ligands were more human receptor selective. Cannabinoid CB2 receptor antagonist, AM-630 ((6-Iodo-2-methyl-1-(2-morpholin-4-yl-ethyl)-1H-indol-3-yl)-(4-methoxy-phenyl)-methanone) was more potent at the rat receptor in radioligand binding and functional assays than that of the human receptor. The findings of the pharmacological differences between the human and rat cannabinoid CB2 receptors in this study provide critical information for characterizing cannabinoid ligands in in vivo rodent models for drug discovery purpose. Topics: Animals; Arachidonic Acids; Benzoxazines; Binding, Competitive; Calcium; Cell Line; Chromones; Colforsin; Cyclic AMP; Cyclohexanols; DNA, Complementary; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Humans; Indoles; Morpholines; Naphthalenes; Polyunsaturated Alkamides; Radioligand Assay; Rats; Receptor, Cannabinoid, CB2; Species Specificity; Transfection; Tritium | 2004 |
Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids.
We have investigated the effects of cannabinoid agonists and antagonists on tumour necrosis factor-alpha (TNF-alpha)-induced secretion of interleukin-8 from the colonic epithelial cell line, HT-29. The cannabinoid receptor agonists [(-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol] (CP55,940); Delta-9-tetrahydrocannabinol; [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl) methyl] pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate] (WIN55,212-2) and 1-propyl-2-methyl-3-naphthoyl-indole (JWH 015) inhibited TNF-alpha induced release of interleukin-8 in a concentration-dependent manner. The less active enantiomer of WIN55212-2, [S(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate (WIN55212-3), and the cannabinoid CB(1) receptor agonist arachidonoyl-2-chloroethylamide (ACEA) had no significant effect on TNF-alpha-induced release of interleukin-8. The cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1,4-pyrazole-3-carboxamide hydrochloride (SR141716A; 10(-6) M) antagonised the inhibitory effect of CP55,940 (pA(2)=8.3+/-0.2, n=6) but did not antagonise the inhibitory effects of WIN55212-2 and JWH 015. The cannabinoid CB(2) receptor antagonist N-(1,S)-endo1,3,3-trimethylbicyclo(2,2,1)heptan-2-yl)-5(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 10(-6) M) antagonised the inhibitory effects of CP55,940 (pA(2)=8.2+/-0.8, n=6), WIN55212-2 (pA(2)=7.1+/-0.3, n=6) and JWH 015 (pA(2)=7.6+/-0.3, n=6), respectively. Western immunoblotting of HT-29 cell lysates revealed a protein with a size that is consistent with the presence of cannabinoid CB(2) receptors. We conclude that in HT-29 cells, TNF-alpha-induced interleukin-8 release is inhibited by cannabinoids through activation of cannabinoid CB(2) receptors. Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cannabinoids; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; HT29 Cells; Humans; Immunoblotting; Indoles; Interleukin-8; Kinetics; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tumor Necrosis Factor-alpha | 2003 |
Pharmacological characterisation of cannabinoid receptors inhibiting interleukin 2 release from human peripheral blood mononuclear cells.
The effects of a range of cannabinoid receptor agonists and antagonists on phytohaemagglutinin-induced secretion of interleukin-2 from human peripheral blood mononuclear cells were investigated. The nonselective cannabinoid receptor agonist WIN55212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholinylmethyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate) and the selective cannabinoid CB(2) receptor agonist JWH 015 ((2-methyl-1-propyl-1H-indol-3-yl)-1-napthalenylmethanone) inhibited phytohaemagglutinin (10 microg/ml)-induced release of interleukin-2 in a concentration-dependent manner (IC(1/2max), WIN55212-2=8.8 x 10(-7) M, 95% confidence limits (C.L.)=2.2 x 10(-7)-3.5 x 10(-6) M; JWH 015=1.8 x 10(-6) M, 95% C.L.=1.2 x 10(-6)-2.9 x 10(-6) M, n=5). The nonselective cannabinoid receptor agonists CP55,940 ((-)-3-[2-hydroxy-4-(1,1-dimethyl-hepthyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol), Delta(9)-tetrahydrocannabinol and the selective cannabinoid CB(1) receptor agonist ACEA (arachidonoyl-2-chloroethylamide) had no significant (P>0.05) inhibitory effect on phytohaemagglutinin-induced release of interleukin-2. Dexamethasone significantly (P<0.05) inhibited phytohaemagglutinin-induced release of interleukin-2 in a concentration-dependent manner (IC(1/2max)=1.3 x 10(-8) M, 95% C.L.=1.4 x 10(-9)-3.2 x 10(-8) M). The cannabinoid CB(1) receptor antagonist SR141716A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride) (10(-6) M) did not antagonise the inhibitory effect of WIN55212-2 whereas the cannabinoid CB(2) receptor antagonist SR144528 (N-(1,S)-endo-1,3,3-trimethyl bicyclo(2,2,1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) antagonised the inhibitory effect of WIN55212-2 (pA(2)=6.3+/-0.1, n=5). In addition, CP55,940 (10(-6) M) and Delta(9)-tetrahydrocannabinol (10(-6) M) also antagonised the inhibitory effects of WIN55212-2 (pA(2)=6.1+/-0.1, n=5 and pA(2)=6.9+/-0.2, n=5). In summary, WIN55,212-2 and JWH 015 inhibited interleukin-2 release from human peripheral blood mononuclear cells via the cannabinoid CB(2) receptor. In contrast, CP55,940 and Delta(9)-tetrahydrocannabinol behaved as partial agonists/antagonists in these cells. Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Humans; Indoles; Interleukin-2; Leukocytes, Mononuclear; Morpholines; Naphthalenes; Phytohemagglutinins; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2003 |