jasplakinolide has been researched along with 2-aminoethoxydiphenyl-borate* in 2 studies
2 other study(ies) available for jasplakinolide and 2-aminoethoxydiphenyl-borate
Article | Year |
---|---|
Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps.
Numerous studies have demonstrated that members of the transient receptor potential (TRP) superfamily of channels are involved in regulated Ca2+ entry. Additionally, most Ca2+-permeable channels are themselves regulated by Ca2+, often in complex ways. In the current study, we have investigated the regulation of TRPC7, a channel known to be potentially activated by both store-operated mechanisms and non-store-operated mechanisms involving diacylglycerols. Surprisingly, we found that activation of TRPC7 channels by diacylglycerol was blocked by the SERCA pump inhibitor thapsigargin. The structurally related channel, TRPC3, was similarly inhibited. This effect depended on extracellular calcium and on the driving force for Ca2+ entry. The inhibition is not due to calcium entry through store-operated channels but rather results from calcium entry through TRPC7 channels themselves. The effect of thapsigargin was prevented by inhibition of calmodulin and was mimicked by pharmacological disruption of the actin cytoskeleton. Our results suggest the presence of a novel mechanism involving negative regulation of TRPC channels by calcium entering through the channels. Under physiological conditions, this negative feedback by calcium is attenuated by the presence of closely associated SERCA pumps. Topics: Adenosine Triphosphate; Boron Compounds; Calcium; Calcium-Transporting ATPases; Calmodulin; Cations; Cytochalasin B; Cytoskeleton; Depsipeptides; Diglycerides; Gadolinium; Humans; Imidazoles; Indoles; Ion Transport; Thapsigargin; TRPC Cation Channels | 2006 |
An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells.
One popular model for the activation of store-operated Ca2+ influx is the secretion-like coupling mechanism, in which peripheral endoplasmic reticulum moves to the plasma membrane upon store depletion thereby enabling inositol 1,4,5-trisphosphate (InsP3) receptors on the stores to bind to, and thus activate, store-operated Ca2+ channels. This movement is regulated by the underlying cytoskeleton. We have examined the validity of this mechanism for the activation of I(CRAC), the most widely distributed and best characterised store-operated Ca2+ current, in a model system, the RBL-1 rat basophilic cell line. Stabilisation of the peripheral cytoskeleton, disassembly of actin microfilaments and disaggregation of microtubules all consistently failed to alter the rate or extent of activation of I(CRAC). Rhodamine-phalloidin labelling was used wherever possible, and revealed that the cytoskeleton had been significantly modified by drug treatment. Interference with the cytoskeleton also failed to affect the intracellular calcium signal that occurred when external calcium was re-admitted to cells in which the calcium stores had been previously depleted by exposure to thapsigargin/ionomycin in calcium-free external solution. Application of positive pressure through the patch pipette separated the plasma membrane from underlying structures (cell ballooning). However, I(CRAC) was unaffected irrespective of whether cell ballooning occurred before or after depletion of stores. Pre-treatment with the membrane-permeable InsP3 receptor antagonist 2-APB blocked the activation of I(CRAC). However, intracellular dialysis with 2-APB failed to prevent I(CRAC) from activating, even at higher concentrations than those used extracellularly to achieve full block. Local application of 2-APB, once I(CRAC) had been activated, resulted in a rapid loss of the current at a rate similar to that seen with the rapid channel blocker La3+. Studies with the more conventional InsP3 receptor antagonist heparin revealed that occupation of the intracellular InsP3-sensitive receptors was not necessary for the activation or maintenance of I(CRAC). Similarly, the InsP3 receptor inhibitor caffeine failed to alter the rate or extent of activation of I(CRAC). Exposure to Li+, which reduces InsP3 levels by interfering with inositol monophosphatase, also failed to alter I(CRAC). Caffeine and Li+ did not affect the size of the intracellular Ca2+ signal that arose when external Ca2+ was re-admitted to cells Topics: Animals; Basophils; Boron Compounds; Caffeine; Calcium; Calcium Channels; Calcium Signaling; Cell Line; Cell Size; Cytochalasin D; Cytoskeleton; Depsipeptides; Enzyme Inhibitors; Heparin; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Lithium; Marine Toxins; Microscopy, Fluorescence; Nocodazole; Oxazoles; Patch-Clamp Techniques; Peptides, Cyclic; Rats; Receptors, Cytoplasmic and Nuclear; Thapsigargin; Time Factors | 2001 |