jasmonic-acid has been researched along with ethylene* in 519 studies
52 review(s) available for jasmonic-acid and ethylene
Article | Year |
---|---|
Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress.
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites. Topics: Ethylenes; Plant Growth Regulators; Plants; Stress, Physiological | 2023 |
An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators.
Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein-ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues. Topics: Abscisic Acid; Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Proteins; Plants; Salicylic Acid; Signal Transduction; Ubiquitination | 2022 |
The Role of Plant Hormones in the Interaction of
Topics: Abscisic Acid; Colletotrichum; Crops, Agricultural; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Humans; Indoleacetic Acids; Metabolic Networks and Pathways; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants; Salicylic Acid | 2021 |
Sensors for the quantification, localization and analysis of the dynamics of plant hormones.
Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes. Topics: Abscisic Acid; Biosensing Techniques; Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Fluorescent Dyes; Gibberellins; Heterocyclic Compounds, 3-Ring; Indoleacetic Acids; Lactones; Oxylipins; Plant Growth Regulators; Plants | 2021 |
Phytohormones in fruit development and maturation.
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species. Topics: Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Fruit; Oxylipins; Plant Growth Regulators; Solanum lycopersicum | 2021 |
Hormones as go-betweens in plant microbiome assembly.
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Indoleacetic Acids; Microbiota; Oxylipins; Plant Growth Regulators; Plant Roots; Plants; Rhizosphere; Salicylic Acid; Signal Transduction | 2021 |
Jasmonates, Ethylene and Brassinosteroids Control Adventitious and Lateral Rooting as Stress Avoidance Responses to Heavy Metals and Metalloids.
Developmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response. It is known that stress hormones like JAs/ET and BRs can regulate the division rate of cells from the first asymmetric cell divisions (ACDs) in meristems, suggesting that stem cell activation may take part in developmental changes as a stress-avoidance-induced response. The root system is a prime responder to stress conditions in soil. Together with the primary root and lateral roots (LRs), adventitious roots (ARs) are necessary for survival in numerous plant species. AR and LR formation is affected by soil pollution, causing substantial root architecture changes by either depressing or enhancing rooting as a stress avoidance/survival response. Here, a detailed overview of the crosstalk between JAs, ET, BRs, and the stress mediator nitric oxide (NO) in auxin-induced AR and LR formation, with/without cadmium and arsenic, is presented. Interactions essential in achieving a balance between growth and adaptation to Cd and As soil pollution to ensure survival are reviewed here in the model species Topics: Brassinosteroids; Cyclopentanes; Ethylenes; Metalloids; Metals, Heavy; Oxylipins; Plant Roots; Stress, Physiological | 2021 |
Phytohormone signalling and cross-talk to alleviate aluminium toxicity in plants.
Aluminium (Al) is one of the most abundant metals in earth crust, which becomes toxic to the plants growing in acidic soil. Phytohormones like ethylene, auxin, cytokinin, abscisic acid, jasmonic acid and gibberellic acid are known to play important role in regulating Al toxicity tolerance in plants. Exogenous applications of auxin, cytokinin and abscisic acid have shown significant effect on Al-induced root growth inhibition. Moreover, ethylene and cytokinin act synergistically with auxin in responding against Al toxicity. A number of studies showed that phytohormones play vital roles in controlling root responses to Al toxicity by modulating reactive oxygen species (ROS) signalling, cell wall modifications, organic acid exudation from roots and expression of Al responsive genes and transcription factors. This review provides a summary of recent studies related to involvement of phytohormone signalling and cross-talk with other pathways in regulating response against Al toxicity in plants. Topics: Abscisic Acid; Aluminum; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Roots; Plants; Signal Transduction | 2021 |
The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication.
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca Topics: Animals; Arthropods; Biological Control Agents; Cyclopentanes; Ecosystem; Ethylenes; Herbivory; Indoleacetic Acids; Microbial Interactions; Oxylipins; Plant Development; Plant Diseases; Plant Growth Regulators; Plants; Rhizosphere; Salicylic Acid; Secondary Metabolism; Stress, Physiological; Trichoderma | 2020 |
Stressed Out About Hormones: How Plants Orchestrate Immunity.
Plants are under relentless challenge by pathogenic bacteria, fungi, and oomycetes, for whom they provide a resource of living space and nutrients. Upon detection of pathogens, plants carry out multiple layers of defense response, orchestrated by a tightly organized network of hormones. In this review, we provide an overview of the phytohormones involved in immunity and the ways pathogens manipulate their biosynthesis and signaling pathways. We highlight recent developments, including the discovery of a defense signaling molecule, new insights into hormone biosynthesis, and the increasing importance of signaling hubs at which hormone pathways intersect. Topics: Abscisic Acid; Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Fungi; Gibberellins; Indoleacetic Acids; Oomycetes; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plants; Salicylic Acid; Signal Transduction | 2019 |
Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions.
Plants have evolved sophisticated root systems that help them to cope with harsh environmental conditions. They are typically composed of a primary root and lateral roots (LRs), but may also include adventitious roots (ARs). Unlike LRs, ARs may be initiated not only from pericycle cells, but from various cell types and tissues depending on the species. Phytohormones, together with many other internal and external stimuli, coordinate and guide every step of AR formation from the first event of cell reprogramming until emergence and outgrowth. In this review, we summarize recent advances in the molecular mechanisms controlling AR formation and highlight the main hormonal cross talk involved in its regulation under different conditions and in different model systems. Topics: Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Roots | 2019 |
CRISPR/Cas9-Mediated Immunity in Plants Against Pathogens.
Global crop production is highly threatened due to pathogen invasion. The huge quantity of pesticides application, although harmful to the environment and human health, is carried out to prevent the crop losses worldwide, every year. Therefore, understanding the molecular mechanisms of pathogenicity and plant resistance against pathogen is important. The resistance against pathogens is regulated by three important phytohormones viz. salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Here we review possible role of CRISPR technology to understand the plant pathogenicity by mutating genes responsible for pathogen invasion or up-regulating the phytohormones genes or resistant genes. Thus hormone biosynthesis genes, receptor and feeding genes of pathogens could be important targets for modifications using CRISPR/Cas9 following multiplexing tool box strategy in order to edit multiple genes simultaneously to produce super plants. Here we put forward our idea thatthe genes would be either mutated in case of plant receptor protein targets of pathogens or up-regulation of resistant genes or hormone biosynthesis genes will be better choice for resistance against pathogens. Topics: Animals; Bacteria; Bacterial Proteins; CRISPR-Associated Protein 9; CRISPR-Cas Systems; Crops, Agricultural; Cyclopentanes; Disease Resistance; Endonucleases; Ethylenes; Fungi; Gene Editing; Genome, Plant; Mutation; Nematoda; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Salicylic Acid | 2018 |
VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes.
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented. Topics: Cyclopentanes; Ethylenes; Microbiota; Mitogen-Activated Protein Kinases; Oxylipins; Plant Development; Plant Growth Regulators; Plants; Salicylic Acid; Volatile Organic Compounds | 2018 |
The Role of Phyto-Melatonin and Related Metabolites in Response to Stress.
Plant hormone candidate melatonin has been widely studied in plants under various stress conditions, such as heat, cold, salt, drought, heavy metal, and pathogen attack. Under stress, melatonin usually accumulates sharply by modulating its biosynthesis and metabolic pathways. Beginning from the precursor tryptophan, four consecutive enzymes mediate the biosynthesis of tryptamine or 5-hydroxytryptophan, serotonin, Topics: Adaptation, Physiological; Cold Temperature; Cyclopentanes; Droughts; Ethylenes; Gene Expression Regulation, Plant; Hot Temperature; Melatonin; Metabolic Networks and Pathways; Oxylipins; Plant Growth Regulators; Plant Proteins; Plants; Protective Agents; Salicylic Acid; Salinity; Serotonin; Stress, Physiological; Tryptamines | 2018 |
Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways.
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca Topics: Calcium; Calcium Signaling; Cyclopentanes; Ethylenes; Focal Adhesion Kinase 2; Gibberellins; Indoleacetic Acids; Multigene Family; Oxylipins; Plant Growth Regulators; Plants; Protein Conformation; Signal Transduction | 2017 |
Hormonal control of cold stress responses in plants.
Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding. Topics: Abscisic Acid; Acclimatization; Cold-Shock Response; Cyclopentanes; Ethylenes; Freezing; Gene Expression Regulation, Plant; Gibberellins; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Plants; Salicylic Acid | 2016 |
Innate immune memory in plants.
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Topics: Animals; Arabidopsis Proteins; Bacterial Infections; Cyclopentanes; DNA Methylation; Ethylenes; Humans; Immunity, Innate; Immunologic Memory; Oxylipins; Pipecolic Acids; Plant Immunity; Plant Roots; Plants; Receptors, Pattern Recognition; Salicylic Acid; Signal Transduction | 2016 |
Plant Resistance Inducers against Pathogens in Solanaceae Species-From Molecular Mechanisms to Field Application.
This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Topics: Aminobutyrates; Bacteria; Crops, Agricultural; Cyclopentanes; Ethylenes; Fungi; Oxylipins; Reactive Oxygen Species; Solanaceae | 2016 |
Friends or foes: new insights in jasmonate and ethylene co-actions.
One strategy for sessile plants to adapt to their surrounding environment involves the modulation of their various internal phytohormone signaling and distributions when the plants sense environmental change. There are currently dozens of identified phytohormones in plant cells and they act in concert to regulate plant growth, development, metabolism and defense. It has been determined that phytohormones often act together to achieve certain physiological functions. Thus, the study of hormone-hormone interactions is becoming a competitive research field for deciphering the underlying regulatory mechanisms. Among phytohormones, jasmonate and ethylene present a fascinating case of synergism and antagonism. They are commonly recognized as defense hormones that act synergistically. Plants impaired in jasmonate and/or ethylene signaling are susceptible to infections by necrotrophic fungi, suggesting that these two hormones are both required for defense. Moreover, jasmonate and ethylene also act antagonistically, such as in the regulation of apical hook development and wounding responses. Here, we highlight the recent breakthroughs in the understanding of jasmonate-ethylene co-actions and point out the potential power of studying protein-protein interactions for systematically exploring signal cross-talk. Topics: Cyclopentanes; Ethylenes; Models, Biological; Oxylipins; Plant Growth Regulators; Protein Interaction Maps; Signal Transduction | 2015 |
Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Plant Proteins; Stress, Physiological | 2015 |
Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.
Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants. Topics: Arabidopsis; Arabidopsis Proteins; Cucumis sativus; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Roots; Plant Stems; Solanum lycopersicum; Transcription Factors | 2015 |
Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.
Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Oxidation-Reduction; Oxylipins; Plant Growth Regulators; Plant Proteins; Plants; Signal Transduction; Stress, Physiological; Transcription Factors | 2015 |
The role of hormones in the aging of plants - a mini-review.
In plants, the final stage of organ development is termed senescence. This is a deterioration process that leads to the decay of tissues and organs, and that, in the case of annual, biennial and/or monocarpic plants, leads to the death of the plant itself. The main function of leaf senescence is nutrient recycle and, since this confers an adaptive advantage, it can be considered an evolutionary selected process. Multiple developmental and environmental signals control senescence, and among them plant hormones are understood to play important roles. In particular, the function of cytokinins and ethylene in senescence has been studied for decades, but it is only since Arabidopsis thaliana was established as a model organism for molecular genetic studies that the underlying molecular and biochemical events have begun to be elucidated.. In this review, we summarize the present understanding of the role of hormones in the developmental control of leaf senescence in plants and in particular highlight recent studies which address its molecular control.. Important findings which connect hormone action to developmental senescence were made in the past few years. For example, it was shown that ethylene activity in natural, age-dependent leaf senescence is conferred by the regulatory function of EIN2, an ethylene-signaling component, in the control of the transcription factor oresara 1 (ORE1), which regulates a large set of senescence-associated genes in their expression. ORE1 mRNA abundance is regulated by the microRNA miR164, which in aging plants is degraded in an EIN2-dependent manner, and it is interesting that another microRNA also governs the hormonal control of senescence. miR319 regulates mRNA abundance of a class of transcription factors which control the expression of LOX2 (lipoxygenase 2), a key enzyme in the JA biosynthetic pathway, and thereby regulates JA homeostasis in senescing leaves.. Reverse and forward genetics have facilitated the elucidation of molecular mechanisms involved in the control of leaf senescence by phytohormones. Studies initiated on the interactions between the different hormonal pathways that control leaf senescence should improve our knowledge in the future. Topics: Abscisic Acid; Arabidopsis; Cyclopentanes; Cytokinins; Ethylenes; Genes, Plant; Indoleacetic Acids; Oxylipins; Plant Development; Plant Growth Regulators; Plant Leaves; Plant Physiological Phenomena; Salicylic Acid | 2014 |
Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana.
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars. Topics: Abscisic Acid; Breeding; Calcium Signaling; Cyclopentanes; Ethylenes; Fusarium; Genotype; Musa; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plants, Genetically Modified; Salicylic Acid | 2014 |
Jasmonate signaling and crosstalk with gibberellin and ethylene.
The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene. Topics: Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gibberellins; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Receptor Cross-Talk; Signal Transduction | 2014 |
Molecular basis for jasmonate and ethylene signal interactions in Arabidopsis.
Jasmonate (JA) and ethylene (ET) are considered to be two essential plant hormones helping plants to tolerate infections by necrotrophic fungi. Phenotypic observations and marker gene expression analysis suggest that JA and ET act synergistically and interdependently in these defence responses. However, JA and ET also interact in an antagonistic way. JA represses ET-induced apical hook formation, while ET inhibits JA-controlled wounding responses. Although these physiological observations have been reported for more than a decade, only recently have the underlying molecular mechanisms been uncovered. Here, I review the recent advances in the understanding of these two hormone interactions and further discuss the biological significance of these apparently opposite interactions between these two hormones in orchestrating plant growth and development. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Models, Biological; Oxylipins; Plant Growth Regulators; Signal Transduction | 2014 |
Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination.
Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Germination; Gibberellins; Oxylipins; Seeds | 2012 |
JAZ repressors and the orchestration of phytohormone crosstalk.
The JAZ (JASMONATE-ZIM DOMAIN) family proteins act as jasmonate (JA) co-receptors and transcriptional repressors in JA signalling in Arabidopsis (Arabidopsis thaliana). Recently, identification of JAZ-interacting proteins regulating different aspects of the JA pathway has shown that JAZ repressors have overlapping, but finely separated functions in JA signalling. In addition, new insights into suppression mechanisms employed by JAZ proteins have been uncovered. Here we first briefly review these recent findings and then highlight newly identified roles for JAZ proteins in orchestrating the crosstalk between JA and other hormone signalling pathways such as ethylene, gibberellin, salicylic acid and auxin. The emerging roles that JAZ proteins play in the regulation of diverse phytohormone signalling interactions illustrate the functional versatility of this protein family. Topics: Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Indoleacetic Acids; Multigene Family; Oxylipins; Plant Growth Regulators; Repressor Proteins; Salicylic Acid; Signal Transduction | 2012 |
Developing a model of plant hormone interactions.
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants. Topics: Abscisic Acid; Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Salicylic Acid | 2011 |
Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates.
Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed. Topics: Abscisic Acid; Brassinosteroids; Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Oxylipins; Plant Growth Regulators; Plants | 2011 |
Plant hormones and nutrient signaling.
Plants count on a wide variety of metabolic, physiological, and developmental responses to adapt their growth to variations in mineral nutrient availability. To react to such variations plants have evolved complex sensing and signaling mechanisms that allow them to monitor the external and internal concentration of each of these nutrients, both in absolute terms and also relatively to the status of other nutrients. Recent evidence has shown that hormones participate in the control of these regulatory networks. Conversely, mineral nutrient conditions influence hormone biosynthesis, further supporting close interrelation between hormonal stimuli and nutritional homeostasis. In this review, we summarize these evidences and analyze possible transcriptional correlations between hormonal and nutritional responses, as a means to further characterize the role of hormones in the response of plants to limiting nutrients in soil. Topics: Abscisic Acid; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Oxylipins; Plant Development; Plant Growth Regulators; Plant Physiological Phenomena; Signal Transduction; Transcription, Genetic | 2009 |
Hormone interactions in stomatal function.
Research in recent years on the biology of guard cells has shown that these specialized cells integrate both extra- and intra-cellular signals in the control of stomatal apertures. Among the phytohormones, abscisic acid (ABA) is one of the key players regulating stomatal function. In addition, auxin, cytokinin, ethylene, brassinosteroids, jasmonates, and salicylic acid also contribute to stomatal aperture regulation. The interaction of multiple hormones can serve to determine the size of stomatal apertures in a condition-specific manner. Here, we discuss the roles of different phytohormones and the effects of their interactions on guard cell physiology and function. Topics: Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Indoleacetic Acids; Models, Biological; Oxylipins; Plant Growth Regulators; Plant Stomata; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2009 |
Role of plant hormones in plant defence responses.
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests. Topics: Animals; Cyclopentanes; Ethylenes; Indoleacetic Acids; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Physiological Phenomena; Plants; Salicylic Acid; Signal Transduction | 2009 |
New perspectives on plant defense responses through modulation of developmental pathways.
Invasion mechanisms of pathogens and counteracting defense mechanisms of plants are highly diverse and perpetually evolving. While most classical studies of plant defense have focused only on defense-specific factor-mediated responses, recent work is beginning to shed light on the involvement of non-stress signal components, especially growth and developmental processes. This shift in focus links plant resistance more closely with growth and development. In this review, we summarize our current understanding of how pathogens manipulate host developmental processes and, conversely, of how plants deploy their developmental processes for self-protection. We conclude by introducing our recent work on UNI, a novel R protein in Arabidopsis which mediates cross-talk between developmental processes and defense responses. Topics: Arabidopsis Proteins; Carrier Proteins; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Development; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction | 2008 |
Salicylic acid-, jasmonic acid- and ethylene-mediated regulation of plant defense signaling.
Topics: Cyclopentanes; Ethylenes; Genetic Engineering; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Plants; Salicylic Acid; Signal Transduction | 2007 |
[Phytohormones in plant disease resistance].
Topics: Abscisic Acid; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gibberellins; Immunity, Innate; Indoleacetic Acids; Oxylipins; Peptide Hormones; Plant Diseases; Plant Growth Regulators; Plant Proteins; Receptors, Cell Surface; Receptors, Peptide; Salicylic Acid; Signal Transduction | 2007 |
Ubiquitin ligases mediate growth and development by promoting protein death.
The ubiquitin proteasome system (UPS) allows plants to effectively and efficiently alter their proteome so as to ensure developmental plasticity and environmental adaptation. Recent work has demonstrated that the UPS is an integral part of multiple hormone-signaling pathways, which modulate cell growth and differentiation. In response to variation in hormone levels, the UPS regulates the abundance of signaling factors, mainly hormone-responsive transcription factors, which mediate cellular responses. Recent exciting studies have shown that hormones directly or indirectly modulate substrate ubiquitination by regulating E3-substrate interaction. Other avenues of regulation include regulating E3 mRNA abundance. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Gibberellins; Indoleacetic Acids; Models, Biological; Oxylipins; Plant Development; Plant Growth Regulators; Plants; Proteasome Endopeptidase Complex; Signal Transduction; Ubiquitin-Protein Ligases | 2007 |
NPR1: the spider in the web of induced resistance signaling pathways.
The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are major players in the regulation of signaling networks that are involved in induced defense responses against pathogens and insects. During the past two years, significant progress has been made in understanding the function of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), a key regulator of systemic acquired resistance (SAR), that is essential for transducing the SA signal to activate PATHOGENESIS-RELATED (PR) gene expression. SA-mediated redox changes in Arabidopsis cells regulate both the functioning of NPR1 and its binding to TGA1, a member of the TGA family of transcription factors that activate SA-responsive elements in the promoters of PR genes upon binding with NPR1. Apart from its role in regulating SAR in the nucleus, a novel cytosolic function of NPR1 in cross-communication between SA- and JA-dependent defense signaling pathways has been identified. Other advances in induced resistance signaling, such as the implication that ET is involved in the generation of systemic signal molecules, the suggestion of the involvement of lipid-derived molecules in long-distance signaling, and the identification of new components of various systemic defense signaling pathways, shed new light on how plants actively defend themselves against harmful organisms. Topics: Arabidopsis; Arabidopsis Proteins; Base Sequence; Basic-Leucine Zipper Transcription Factors; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Models, Biological; Oxidation-Reduction; Oxylipins; Plants; Salicylic Acid; Signal Transduction; Transcription Factors | 2004 |
Hormonal regulation of plant growth and development.
Topics: Abscisic Acid; Arabidopsis; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Hormones; Indoleacetic Acids; Oxylipins; Plant Development; Plant Growth Regulators; Plant Physiological Phenomena; Plant Proteins; Plants; Signal Transduction; Steroids | 2004 |
[Herbivore elicitors and plant signaling pathways involved in the production of herbivore-induced plant volatiles].
Topics: alpha-Linolenic Acid; Animals; Cyclopentanes; Ethylenes; Food Chain; Glutamine; Insecta; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Salicylic Acid; Signal Transduction; Spermine; Volatilization | 2003 |
Systemic acquired resistance in crop protection: from nature to a chemical approach.
Plant natural resistance to potential parasites is regulated by two fundamental mechanisms: the "nonhost" and the "gene-for-gene" resistance, respectively. The latter is relevant when a cultivar resistant (R) gene product recognizes an avirulence gene product in the attacking pathogen and triggers an array of biochemical reactions that halt the pathogen around the site of attempted invasion. To cope with virulent pathogens, plants may benefit by some temporary immunity after a challenge triggering such an array of defense reactions, following a localized necrotizing infection as a possible consequence of a hypersensitive response (HR). This process, mediated by accumulation of endogenous salicylic acid (SA), is called systemic acquired resistance (SAR) and provides resistance, to a certain extent even against unrelated pathogens, such as viruses, bacteria, and fungi, for a relatively long-lasting period. SAR may be more potently activated in plants pretreated with chemical inducers, most of which appear to act as functional analogues of SA. This review summarizes the complex aspects of SAR as a way to prevent crop diseases by activating the plants' own natural defenses. The following outline is taken: (1) introduction through the historical insight of the phenomenon; (2) oxidative burst, which produces high levels of oxygen reactive species in a way similar to the inflammation state in animals and precedes the HR to the pathogen attack; (3) SAR as a coordinate action of several gene products leading to the expression of defenses well beyond the time and space limits of the HR; (4) jasmonic acid (JA) and ethylene as other endogenous factors mediating a different pathway of induced resistance; (5) pathogenesis related proteins (PR proteins) de novo synthesized as specific markers of SAR; (6) exogenous inducers of SAR, which include both synthetic chemicals and natural products; (7) the pathway of signal transduction between sensitization by inducers and PR expression, as inferred by mutageneses, a process that is still, to a large extent, not completely elucidated; (8) prospects and costs; (9) final remarks on the state-of-the-art of the topic reflecting the chemical view of the author, based on the more authoritative ones expressed by the authors of the reviewed papers. Topics: Agriculture; Crops, Agricultural; Cyclopentanes; Ethylenes; Oxylipins; Plant Diseases; Plant Proteins; Plants; Plants, Genetically Modified; Reactive Oxygen Species; Respiratory Burst; Salicylic Acid | 2003 |
Cross talk between signaling pathways in pathogen defense.
Plant defense in response to microbial attack is regulated through a complex network of signaling pathways that involve three signaling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene. The SA and JA signaling pathways are mutually antagonistic. This regulatory cross talk may have evolved to allow plants to fine-tune the induction of their defenses in response to different plant pathogens. Topics: Cyclopentanes; Ethylenes; Immunity, Innate; Oxylipins; Plant Diseases; Plants; Salicylic Acid; Signal Transduction | 2002 |
Long-distance CO(2) signalling in plants.
Stomatal numbers are tightly controlled by environmental signals including light intensity and atmospheric CO(2) partial pressure. This requires control of epidermal cell development during the early phase of leaf growth and involves changes in both the density of cells on the leaf surface and the proportion of cells that adopt a stomatal fate. This paper reviews the current understanding of how stomata develop and describes recent advances that have given insights into the regulatory mechanisms involved using mutant Arabidopsis plants that implicates a role for long-chain fatty acids in cell-to-cell communication. Evidence is presented which indicates that long-distance signalling from mature to newly developing leaves forms part of the mechanism by which stomatal development responds to environmental cues. Analysis of mutant plants suggests that the plant hormones abscisic acid, ethylene and jasmonates are implicated in the long-distance signalling pathway and that the action may be mediated by reactive oxygen species. Topics: Ascorbic Acid; Carbohydrate Metabolism; Carbon Dioxide; Cell Differentiation; Cell Division; Cyclopentanes; Ecosystem; Ethylenes; Mutation; Oxylipins; Plant Epidermis; Plant Growth Regulators; Plant Leaves; Reactive Oxygen Species; Signal Transduction | 2002 |
Ethylene biosynthesis and signaling networks.
Topics: Cyclopentanes; Ethylenes; Fungi; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Immunity, Innate; Oxylipins; Plant Diseases; Plant Roots; Plants; Salicylic Acid; Signal Transduction; Stress, Mechanical; Symbiosis; Ultraviolet Rays | 2002 |
Genetic dissection of systemic acquired resistance.
Significant progress has been made in the past year in understanding the mechanism of systemic acquired resistance. Mitogen-activated protein kinase cascades have been implicated as negative regulators of salicyclic acid accumulation and the induction of resistance. The salicylic acid signal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors that are involved in regulating salicylic-acid-mediated gene expression. Both promoter analyses and genetic studies have shown that gene expression in systemic acquired resistance requires not only the activation of a transcriptional activator(s) but also inhibition of a transcriptional repressor(s). Microarray experiments have been performed to search for those genes whose expression is transcriptionally regulated during systemic acquired resistance and to identify common promoter elements that control these genes. Topics: Anti-Infective Agents; Antiviral Agents; Cyclopentanes; Ethylenes; Fungal Proteins; Gene Expression Regulation, Plant; Genes, Plant; Immunity, Innate; Mitogen-Activated Protein Kinases; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Protein Kinases; Saccharomyces cerevisiae Proteins; Salicylic Acid; Signal Transduction; Transcriptional Activation | 2001 |
The physiology of ozone induced cell death.
Topics: Apoptosis; Cyclopentanes; Ethylenes; Models, Biological; Nitric Oxide; Oxylipins; Ozone; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2001 |
Manipulation of hormone biosynthetic genes in transgenic plants.
Modification of plant hormone biosynthesis through the introduction of bacterial genes is a natural form of genetic engineering, which has been exploited in numerous studies on hormone function. Recently, biosynthetic pathways have been largely elucidated for most of the plant hormone classes, and genes encoding many of the enzymes have been cloned. These advances offer new opportunities to manipulate hormone content in order to study their mode of action and the regulation of their biosynthesis. Furthermore, this technology is providing the means to introduce agriculturally useful traits into crops. Topics: Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plants, Genetically Modified | 2000 |
[Molecular mechanisms of damage caused by air pollutants and protection against it].
Topics: Air Pollutants; Apoptosis; Cyclopentanes; Ethylenes; Oxidative Stress; Oxylipins; Ozone; Plant Physiological Phenomena; Plants; Polyamines; Reactive Oxygen Species; Salicylic Acid | 1999 |
[Signal transduction of wound responses in plants].
Topics: Abscisic Acid; Adaptation, Physiological; Cyclopentanes; Cysteine Endopeptidases; Cytokinins; Ethylenes; Mitogen-Activated Protein Kinases; Multienzyme Complexes; Oxylipins; Peptides; Plant Physiological Phenomena; Proteasome Endopeptidase Complex; Signal Transduction; Ubiquitins | 1999 |
Signal transduction in the wound response of tomato plants.
The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory. Topics: Amino Acid Sequence; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Lipid Metabolism; Models, Biological; Molecular Sequence Data; Mutation; Oxylipins; Peptides; Plants, Genetically Modified; Polysaccharides; Protease Inhibitors; Signal Transduction; Solanum lycopersicum | 1998 |
SA, JA, ethylene, and disease resistance in plants.
Exciting advances have been made during the past year: isolating mutants affecting plant disease resistance, cloning genes involved in the regulation of various defense responses, and characterizing novel defense signaling pathways. Recent studies have demonstrated that jasmonic acid and ethylene are important for the induction of nonspecific disease resistance through signaling pathways that are distinct from the classical systemic acquired resistance response pathway regulated by salicylic acid. Topics: Cyclopentanes; Ethylenes; Oxylipins; Plants; Salicylic Acid; Signal Transduction | 1998 |
Signal molecules in systemic plant resistance to pathogens and pests.
Topics: Acetates; Cyclopentanes; Ethylenes; Immunity, Innate; Oxylipins; Peptides; Plant Growth Regulators; Plant Proteins; Plants; Salicylates; Salicylic Acid; Signal Transduction | 1992 |
467 other study(ies) available for jasmonic-acid and ethylene
Article | Year |
---|---|
ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling.
Maize (Zea mays) terpenoid phytoalexins (MTPs) induced by multiple fungi display extensive antimicrobial activities, yet how maize precisely regulates MTP accumulation upon pathogen infection remains elusive. In this study, pretreatment with jasmonic acid (JA)/ethylene (ET)-related inhibitors significantly reduced Fusarium graminearum-induced MTP accumulation and resulted in enhanced susceptibility to F. graminearum, indicating the involvement of JA/ET in MTP regulatory network. ZmEREB92 positively regulated MTP biosynthetic gene (MBG) expression by correlation analysis. Knockout of ZmEREB92 significantly compromised maize resistance to F. graminearum with delayed induction of MBGs and attenuated MTP accumulation. The activation of ZmEREB92 on MBGs is dependent on the interaction with ZmMYC2, which directly binds to MBG promoters. ZmJAZ14 interacts both with ZmEREB92 and with ZmMYC2 in a competitive manner to negatively regulate MBG expression. Altogether, our findings illustrate the regulatory mechanism for JA/ET-mediated MTP accumulation upon F. graminearum infection with the involvement of ZmEREB92, ZmMYC2, and ZmJAZ14, which provides new insights into maize disease responses. Topics: Ethylenes; Fusarium; Phytoalexins; Plant Diseases; Terpenes; Zea mays | 2023 |
Jasmonate-deficient mutant lox3a reveals crosstalk between jasmonate and ethylene in the differential regulation of male and female flower opening and early fruit development in Cucurbita pepo.
Jasmonate (JA) has been found to be a relevant hormone in floral development in numerous species, but its function in cucurbit floral development and sex determination is unknown. Crosstalk between JA and ethylene (ET) in the differential regulation of male and female floral development was investigated by using the novel JA-deficient mutant lox3a, and the ET-deficient and -insensitive mutants, aco1a and etr2b, respectively, of Cucurbita pepo. The lox3a mutation suppresses male and female flower opening and induces the development of parthenocarpic fruit. A bulked-segregant analysis coupled with whole genome sequencing and fine mapping approach allowed the identification of lox3a mutation in CpLOX3A, a LIPOXYGENASE gene involved in JA biosynthesis. The reduced JA content and expression of JA-signalling genes in male and female flowers of lox3a, and the rescue of lox3a phenotype by external application of methyl jasmonate (MeJA), demonstrated that JA controls petal elongation and flower opening, as well as fruit abortion in the absence of fertilization. JA also rescued the phenotype of ET mutants aco1a and etr2b, which are both specifically defective in female flower opening and fruit abortion. ET, the sex determining hormone of cucurbits, is induced in female flowers towards anthesis, activating JA production and promoting the aperture of the female flower, and the abortion of the unfertilized ovary. Given the close association between flower closure and parthenocarpic fruit development, we propose that flower opening can act as a switch that triggers fruit set and development in fertilized ovaries, but may alternatively induce the abortion of the unfertilized ovary. Both ET and JA from mature and senescent petals can serve as remote signals that determine the alternative development of the ovary and fruit. Topics: Cucurbita; Cyclopentanes; Ethylenes; Flowers; Fruit; Gene Expression Regulation, Plant; Hormones; Oxylipins; Plant Proteins | 2023 |
Two interacting ethylene response factors negatively regulate peach resistance to Lasiodiplodia theobromae.
Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees. Topics: Ethylenes; Plants; Prunus persica | 2023 |
Autophagy promotes jasmonate-mediated defense against nematodes.
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1. Topics: Animals; Cyclopentanes; Gene Expression Regulation, Plant; Nematoda; Oxylipins; Plant Diseases; Plant Immunity; Plant Roots | 2023 |
Methyl jasmonate influences ethylene formation, defense systems, nutrient homeostasis and carbohydrate metabolism to alleviate arsenic-induced stress in rice (Oryza sativa).
Topics: Arsenic; Carbohydrate Metabolism; Ethylenes; Homeostasis; Oryza | 2023 |
The genetic and physiological basis of Arabidopsis thaliana tolerance to Pseudomonas viridiflava.
The opportunistic pathogen Pseudomonas viridiflava colonizes > 50 agricultural crop species and is the most common Pseudomonas in the phyllosphere of European Arabidopsis thaliana populations. Belonging to the P. syringae complex, it is genetically and phenotypically distinct from well-characterized P. syringae sensu stricto. Despite its prevalence, we lack knowledge of how A. thaliana responds to its native isolates at the molecular level. Here, we characterize the host response in an A. thaliana - P. viridiflava pathosystem. We measured host and pathogen growth in axenic infections and used immune mutants, transcriptomics, and metabolomics to determine defense pathways influencing susceptibility to P. viridiflava infection. Infection with P. viridiflava increased jasmonic acid (JA) levels and the expression of ethylene defense pathway marker genes. The immune response in a susceptible host accession was delayed compared with a tolerant one. Mechanical injury rescued susceptibility, consistent with an involvement of JA. The JA/ethylene pathway is important for suppression of P. viridiflava, yet suppression capacity varies between accessions. Our results shed light on how A. thaliana can suppress the ever-present P. viridiflava, but further studies are needed to understand how P. viridiflava evades this suppression to spread broadly across A. thaliana populations. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Pseudomonas; Pseudomonas syringae; Salicylic Acid | 2023 |
Abscisic acid- and ethylene-induced abscission of yellow lupine flowers is mediated by jasmonates.
The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission. Topics: Abscisic Acid; Ethylenes; Flowers; Gene Expression Regulation, Plant; Lupinus; Plant Growth Regulators | 2023 |
Regulation of hormone pathways in wheat infested by Blumeria graminis f. sp. tritici.
Wheat powdery mildew is an obligate biotrophic pathogen infecting wheat, which can pose a serious threat to wheat production. In this study, transcriptome sequencing was carried out on wheat leaves infected by Blumeria graminis f. sp. tritici from 0 h to 7 d.. KEGG and GO enrichment analysis revealed that the upstream biosynthetic pathways and downstream signal transduction pathways of salicylic acid, jasmonic acid, and ethylene were highly enriched at all infection periods. Trend analysis showed that the expressions of hormone-related genes were significantly expressed from 1 to 4 d, suggesting that 1 d-4 d is the main period in which hormones play a defensive role. During this period of time, the salicylic acid pathway was up-regulated, while the jasmonic acid and ethylene pathways were suppressed. Meanwhile, four key modules and 11 hub genes were identified, most of which were hormone related.. This study improves the understanding of the dynamical responses of wheat to Blumeria graminis f. sp. tritici infestation at the transcriptional level and provides a reference for screening core genes regulated by hormones. Topics: Ethylenes; Hormones; Plant Diseases; Salicylic Acid; Triticum | 2023 |
Transcriptome-wide analysis of North-East Indian rice cultivars in response to Bipolaris oryzae infection revealed the importance of early response to the pathogen in suppressing the disease progression.
Brown spot disease (BSD) of rice (Oryza sativa L.) caused by Bipolaris oryzae is one of the major and neglected fungal diseases worldwide affecting rice production. Despite its significance, very limited knowledge on genetics and genomics of rice in response to B. oryzae available. Our study firstly identified moderately resistant (Gitesh) and susceptible (Shahsarang) North-East Indian rice cultivars in response to a native Bipolaris oryzae isolate BO1. Secondly, a systematic comparative RNA seq was performed for both cultivars at four different time points viz. 12, 24, 48, and 72 hours post infestation (hpi). Differential gene expression analysis revealed the importance of early response to the pathogen in suppressing disease progression. The pathogen negatively regulates the expression of photosynthetic-related genes at early stages in both cultivars. Of the cell wall modification enzymes, cellulose synthase and callose synthase are important for signal transduction and defense. Cell wall receptors OsLYP6, OsWAK80 might positively and OsWAK25 negatively regulate disease resistance. Jasmonic acid and/or abscisic acid signaling pathways are presumably involved in disease resistance, whereas salicylic acid pathway, and an ethylene response gene OsEBP-89 in promoting disease. Surprisingly, pathogenesis-related proteins showed no antimicrobial impact on the pathogen. Additionally, transcription factors OsWRKY62 and OsWRKY45 together might negatively regulate resistance to the pathogen. Taken together, our study has identified and provide key regulatory genes involved in response to B. oryzae which serve as potential resources for functional genetic analysis to develop genetic tolerance to BSD of rice. Topics: Abscisic Acid; Bipolaris; Cell Wall; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Oryza; Oxylipins; Plant Diseases; Plant Proteins; Salicylic Acid; Signal Transduction; Transcription Factors | 2022 |
Functional analysis of hot pepper ethylene responsive factor 1A in plant defense.
Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some Topics: Capsicum; Gene Expression Regulation, Plant; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified | 2022 |
A molecular framework for signaling crosstalk between jasmonate and ethylene in anthocyanin biosynthesis, trichome development, and defenses against insect herbivores in Arabidopsis.
The phytohormones ethylene (ET) and jasmonate (JA) regulate plant development, growth, and defense responses; however, the molecular basis for their signaling crosstalk is unclear. Here, we show that JA-ZIM-domain (JAZ) proteins, which repress JA signaling, repress trichome initiation/branching and anthocyanin accumulation, and inhibit the transcriptional activity of the basic helix-loop-helix (bHLH)-MYB members (GLABRA3 (GL3)-GL1 and TRANSPARENT TESTA 8 (TT8)-MYB75) of WD-repeat/bHLH/MYB (WBM) complexes. The ET-stabilized transcription factors ETHYLENE-INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1) were found to bind to several members of WBM complexes, including GL3, ENHANCER OF GLABRA3 (EGL3), TT8, GL1, MYB75, and TRANSPARENT TESTA GLABRA1 (TTG1). This binding repressed the transcriptional activity of the bHLH-MYB proteins and inhibited anthocyanin accumulation, trichome formation, and defenses against insect herbivores while promoting root hair formation. Conversely, the JA-activated bHLH members GL3, EGL3, and TT8 of WBM complexes were able to interact with and attenuate the transcriptional activity of EIN3/EIL1 at the HOOKLESS1 promoter, and their overexpression inhibited apical hook formation. Thus, this study demonstrates a molecular framework for signaling crosstalk between JA and ET in plant development, secondary metabolism, and defense responses. Topics: Animals; Anthocyanins; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Transcription Factors; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Insecta; Oxylipins; Trichomes | 2022 |
Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25.
Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Nuclear Proteins; Oxylipins; Plant Growth Regulators; Signal Transduction; Transcription Factors | 2022 |
Spatiotemporal regulation of JAZ4 expression and splicing contribute to ethylene- and auxin-mediated responses in Arabidopsis roots.
Jasmonic acid (JA) signaling controls several processes related to plant growth, development, and defense, which are modulated by the transcription regulator and receptor JASMONATE-ZIM DOMAIN (JAZ) proteins. We recently discovered that a member of the JAZ family, JAZ4, has a prominent function in canonical JA signaling as well as other mechanisms. Here, we discovered the existence of two naturally occurring splice variants (SVs) of JAZ4 in planta, JAZ4.1 and JAZ4.2, and employed biochemical and pharmacological approaches to determine protein stability and repression capability of these SVs within JA signaling. We then utilized quantitative and qualitative transcriptional studies to determine spatiotemporal expression and splicing patterns in vivo, which revealed developmental-, tissue-, and organ-specific regulation. Detailed phenotypic and expression analyses suggest a role of JAZ4 in ethylene (ET) and auxin signaling pathways differentially within the zones of root development in seedlings. These results support a model in which JAZ4 functions as a negative regulator of ET signaling and auxin signaling in root tissues above the apex. However, in the root apex JAZ4 functions as a positive regulator of auxin signaling possibly independently of ET. Collectively, our data provide insight into the complexity of spatiotemporal regulation of JAZ4 and how this impacts hormone signaling specificity and diversity in Arabidopsis roots. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Roots; RNA Splicing; Seedlings; Signal Transduction | 2021 |
Jasmonic Acid and Ethylene Participate in the Gibberellin-Induced Ovule Programmed Cell Death Process in Seedless Pear '1913' (
Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear '1913' and seeded pear, and that GA Topics: Apoptosis; Cyclopentanes; Ethylenes; Gibberellins; Ovule; Oxylipins; Pyrus | 2021 |
Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in
Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Topics: Acetates; Cyclopentanes; Ethylenes; Fabaceae; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Kaempferols; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Plants; Quercetin; RNA-Seq | 2021 |
The transcription factor ORA59 exhibits dual DNA binding specificity that differentially regulates ethylene- and jasmonic acid-induced genes in plant immunity.
Jasmonic acid (JA) and ethylene (ET) signaling modulate plant defense against necrotrophic pathogens in a synergistic and interdependent manner, while JA and ET also have independent roles in certain processes, e.g. in responses to wounding and flooding, respectively. These hormone pathways lead to transcriptional reprogramming, which is a major part of plant immunity and requires the roles of transcription factors. ET response factors are responsible for the transcriptional regulation of JA/ET-responsive defense genes, of which ORA59 functions as a key regulator of this process and has been implicated in the JA-ET crosstalk. We previously demonstrated that Arabidopsis (Arabidopsis thaliana) GDSL LIPASE 1 (GLIP1) depends on ET for gene expression and pathogen resistance. Here, promoter analysis of GLIP1 revealed ERELEE4 as the critical cis-element for ET-responsive GLIP1 expression. In a yeast one-hybrid screening, ORA59 was isolated as a specific transcription factor that binds to the ERELEE4 element, in addition to the well-characterized GCC box. We found that ORA59 regulates JA/ET-responsive genes through direct binding to these elements in gene promoters. Notably, ORA59 exhibited a differential preference for GCC box and ERELEE4, depending on whether ORA59 activation is achieved by JA and ET, respectively. JA and ET induced ORA59 phosphorylation, which was required for both activity and specificity of ORA59. Furthermore, RNA-seq and virus-induced gene silencing analyses led to the identification of ORA59 target genes of distinct functional categories in JA and ET pathways. Our results provide insights into how ORA59 can generate specific patterns of gene expression dynamics through JA and ET hormone pathways. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA-Binding Proteins; DNA, Plant; Ethylenes; Oxylipins; Plant Immunity; Transcription Factors | 2021 |
Jasmonic Acid- and Ethylene-Induced Mitochondrial Alternative Oxidase Stimulates Marssonina brunnea Defense in Poplar.
Mitochondrial processes are implicated in plant response to biotic stress caused by viruses, actinomyces, bacteria and pests, but their function in defense against fungal invasion remains unclear. Here, we investigated the role and regulation of mitochondrial alternative oxidase (AOX) in response to black spot disease caused by the hemibiotrophic fungus Marssonina brunnea in poplar. M. brunnea inoculation induced the transcription of the AOX1a gene in the mitochondrial electron transport chain and of jasmonic acid (JA) and ethylene (ET) biosynthetic genes, with the accumulation of these phytohormones in poplar leaf, while inhibiting the transcript amount of the mitochondrial cytochrome c oxidase gene (COX6b) and genes related to salicylic acid (SA). Enhanced AOX reduced poplar susceptibility to M. brunnea with a higher ATP/ADP ratio while the repressed AOX caused the reverse effect. Exogenous JA and 1-aminocyclopropane-1-carboxylic acid (ACC, a biosynthetic precursor of ET) inhibited the transcript amount of COX6b and consequently increased the ratio of AOX pathway to total respiration. Furthermore, the transcription of CYS C1 and CYS D1 genes catalyzing cyanide metabolism was induced, while the cysteine (CYS) substrate levels reduced upon M. brunnea inoculation; exogenous JA and ACC mimicked the effect of M. brunnea infection on cysteine. Exogenous SA enhanced, while JA and ACC reduced, poplar susceptibility to M. brunnea. Moreover, inhibiting AOX completely prohibited JA- and ET-increased tolerance to M. brunnea in poplar. These observations indicate that the JA- and ET-induced mitochondrial AOX pathway triggers defense against M. brunnea in poplar. This effect probably involves cyanide. These findings deepen our understanding of plant-pathogenic fungi interactions. Topics: Ascomycota; Cyclopentanes; Disease Resistance; Ethylenes; Mitochondrial Proteins; Oxidoreductases; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; Populus | 2021 |
Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism.
Peach (Prunus persica L.) fruit are highly susceptible to chilling injury during cold storage, resulting in internal flesh browning and a failure to soften normally. We have examined the effect of a postharvest treatment consisting of a brief (30 s) dip in the natural plant hormone jasmonic acid, prior to storage at 4 °C. Jasmonic acid treatment reduced the severity of internal flesh browning and did not inhibit fruit softening over a 35 d storage period. Two major physiological effects of jasmonic acid on the fruit were observed, an increase in ethylene production and a prevention of the decline in soluble sugar content seen in controls. An increased soluble sugar content may have multiple benefits in resisting chilling stress, scavenging reactive oxygen species and acting to stabilize membranes. Our results show that a treatment with jasmonic acid can enhance chilling tolerance of peach fruit by regulating ethylene and sugar metabolism. Topics: Cold Temperature; Cyclopentanes; Ethylenes; Food Storage; Fruit; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Plant Proteins; Prunus persica; Sugars | 2021 |
Ethylene is a local modulator of jasmonate-dependent phenolamide accumulation during Manduca sexta herbivory in Nicotiana attenuata.
Rapid reconfigurations of interconnected phytohormone signalling networks allow plants to tune their physiology to constantly varying ecological conditions. During insect herbivory, most of the induced changes in defence-related leaf metabolites are controlled by jasmonate (JA) signalling, which, in the wild tobacco Nicotiana attenuata, recruits MYB8, a transcription factor controlling the accumulation of phenolic-polyamine conjugates (phenolamides). In this and other plant species, herbivory also locally triggers ethylene (ET) production but the outcome of the JA-ET cross-talk at the level of secondary metabolism regulation has remained only superficially investigated. Here, we analysed local and systemic herbivory-induced changes by mass spectrometry-based metabolomics in leaves of transgenic plants impaired in JA, ET and MYB8 signalling. Parsing deregulations in this factorial data-set identified a network of JA/MYB8-dependent phenolamides for which impairment of ET signalling attenuated their accumulation only in locally damaged leaves. Further experiments revealed that ET, albeit biochemically interrelated to polyamine metabolism via the intermediate S-adenosylmethionine, does not alter the free polyamine levels, but instead significantly modulates phenolamide levels with marginal modulations of transcript levels. The work identifies ET as a local modulator of phenolamide accumulations and provides a metabolomics data-platform with which to mine associations among herbivory-induced signalling and specialized metabolites in N. attenuata. Topics: Abscisic Acid; Amides; Animals; Chromatography, High Pressure Liquid; Cyclopentanes; Ethylenes; Manduca; Nicotiana; Oxylipins; Plant Defense Against Herbivory; Plant Growth Regulators; Plant Leaves; Plant Proteins; Real-Time Polymerase Chain Reaction; Salicylic Acid; Transcription Factors | 2021 |
Transcriptomic profiling of
Topics: Brassica napus; Cells, Cultured; Cyclopentanes; Ethylenes; Gene Expression Profiling; Immunity, Innate; Opportunistic Infections; Organ Specificity; Oxylipins; Plant Growth Regulators; Plant Immunity; Pseudomonas aeruginosa; Pseudomonas Infections; Salicylic Acid; Signal Transduction; Up-Regulation | 2021 |
The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L.
Fusarium yellows resistant and susceptible lines in Brassica rapa showed different salicylic acid responses; the resistant line showed a similar response to previous reports, but the susceptible line differed. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease. Previous studies showed that genes related to salicylic acid (SA) response were more highly induced following Foc infection in Brassica rapa Fusarium yellows resistant lines than susceptible lines. However, SA-induced genes have not been identified at the whole genome level and it was unclear whether they were up-regulated by Foc inoculation. Transcriptome analysis with and without SA treatment in the B. rapa Fusarium yellows susceptible line 'Misugi' and the resistant line 'Nanane' was performed to obtain insights into the relationship between SA sensitivity/response and Fusarium yellows resistance. 'Nanane's up-regulated genes were related to SA response and down-regulated genes were related to jasmonic acid (JA) or ethylene (ET) response, but differentially expressed genes in 'Misugi' were not. This result suggests that Fusarium yellows resistant and susceptible lines have a different SA response and that an antagonistic transcription between SA and JA/ET responses was found only in a Fusarium yellows resistant line. SA-responsive genes were induced by Foc inoculation in Fusarium yellows resistant (RJKB-T23) and susceptible lines (RJKB-T24). By contrast, 39 SA-induced genes specific to RJKB-T23 might function in the defense response to Foc. In this study, SA-induced genes were identified at the whole genome level, and the possibility, the defense response to Foc observed in a resistant line could be mediated by SA-induced genes, is suggested. These results will be useful for future research concerning the SA importance in Foc or other diseases resistance in B. rapa. Topics: Arabidopsis; Brassica rapa; Cyclopentanes; Disease Resistance; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Gene Ontology; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Plant Proteins; Reproducibility of Results; Salicylic Acid | 2021 |
Foliar resistance to Rhizoctonia solani in Arabidopsis is compromised by simultaneous loss of ethylene, jasmonate and PEN2 mediated defense pathways.
Rhizoctonia solani causes damaging yield losses on most major food crops. R. solani isolates belonging to anastomosis group 8 (AG8) are soil-borne, root-infecting pathogens with a broad host range. AG8 isolates can cause disease on wheat, canola and legumes, however Arabidopsis thaliana is heretofore thought to possess non-host resistance as A. thaliana ecotypes, including the reference strain Col-0, are resistant to AG8 infection. Using a mitochondria-targeted redox sensor (mt-roGFP2) and cell death staining, we demonstrate that both AG8 and a host isolate (AG2-1) of R. solani are able to infect A. thaliana roots. Above ground tissue of A. thaliana was found to be resistant to AG8 but not AG2. Genetic analysis revealed that ethylene, jasmonate and PENETRATION2-mediated defense pathways work together to provide resistance to AG8 in the leaves which subsequently enable tolerance of root infections. Overall, we demonstrate a significant difference in defense capabilities of above and below ground tissue in providing resistance to R. solani AG8 in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Host-Pathogen Interactions; Immunohistochemistry; N-Glycosyl Hydrolases; Oxylipins; Plant Diseases; Plant Roots; Rhizoctonia; Signal Transduction; Stress, Physiological | 2021 |
Lyso-phosphatidylethanolamine primes the plant immune system and promotes basal resistance against hemibiotrophic pathogens.
Lyso-phosphatidylethanolamine (LPE) is a natural phospholipid that functions in the early stages of plant senescence. Plant innate immunity and early leaf senescence share molecular components. To reveal conserved mechanisms that link-up both processes, we tried to unravel to what extent LPE coordinates defense response and by what mode of action.. We found that LPE-treatment induces signaling and biosynthesis gene expression of the defensive hormone salicylic acid (SA). However, jasmonic acid and ethylene triggered gene induction levels are indistinguishable from the control. In accordance with gene induction for SA, oxidative stress, and reactive oxygen species (ROS) production, we detected raised in-situ hydrogen peroxide levels following LPE-application. Yet, ROS-burst assays of LPE-pretreated plants revealed a reduced release of ROS after PAMP-administration suggesting that LPE interferes with an oxidative burst. Our data refer to a priming effect of LPE on SA/ROS-associated genomic loci that encode pivotal factors in early senescence and considerably improve plant basal immunity. Thus, we challenged Arabidopsis thaliana with the hemibiotrophic pathogen Pseudomonas syringae. Consistently, we found an increased resistance in the LPE-pretreated Arabidopsis plants compared to the mock-pretreated control.. Our results underscore a beneficial effect of LPE on plant innate immunity against hemibiotrophs. Given the resistance-promoting effect of exogenously applied LPE, this bio-agent bears the potential of being applied as a valuable tool for the genetic activation of defense-associated traits. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Lysophospholipids; Oxylipins; Plant Diseases; Plant Immunity; Pseudomonas syringae; Salicylic Acid; Signal Transduction | 2021 |
Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance.
Jasmonates (JAs) are phytohormones with crucial roles in plant defense. Plants accumulate JAs in response to wounding or herbivore attack, but how JA biosynthesis is triggered remains poorly understood. Here we show that herbivory by cotton bollworm (Helicoverpa armigera) induced both ethylene (ET) and JA production in tomato (Solanum lycopersicum) leaves. Using RNA-seq, ET mutants, and inhibitors of ET signaling, we identified ET-induced ETHYLENE RESPONSE FACTOR 15 (ERF15) and ERF16 as critical regulators of JA biosynthesis in tomato plants. Transcripts of ERF15 and ERF16 were markedly upregulated and peaked at 60 and 15 min, respectively, after simulated herbivore attack. While mutation in ERF16 resulted in the attenuated expression of JA biosynthetic genes and decreased JA accumulation 15 min after the simulated herbivory treatment, these changes were not observed in erf15 mutants until 60 min after treatment. Electrophoretic mobility shift assays and dual-luciferase assays demonstrated that both ERFs15 and 16 are transcriptional activators of LIPOXYGENASE D, ALLENE OXIDE CYCLASE, and 12-OXO-PHYTODIENOIC ACID REDUCTASE 3, key genes in JA biosynthesis. Furthermore, JA-activated MYC2 and ERF16 also function as the transcriptional activators of ERF16, contributing to dramatic increases in ERF16 expression. Taken together, our results demonstrated that ET signaling is involved in the rapid induction of the JA burst. ET-induced ERF15 and ERF16 function as powerful transcriptional activators that trigger the JA burst in response to herbivore attack. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Leaves; Plant Proteins; RNA-Seq; Solanum lycopersicum | 2021 |
Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice.
Ethylene (ET) and jasmonic acid (JA) play important roles in plant defenses against biotic stresses. Crosstalk between JA and ET has been well studied in mediating pathogen resistance, but its roles in piercing-sucking insect resistance are unclear. The brown planthopper (BPH; Nilaparvata lugens) is the most notorious piercing-sucking insect specific to rice (Oryza sativa) that severely affects yield. A genetic analysis revealed that OsEBF1 and OsEIL1, which are in the ET signaling pathway, positively and negatively regulated BPH resistance, respectively. Molecular and biochemical analyses revealed direct interactions between OsEBF1 and OsEIL1. OsEBF1, an E3 ligase, mediated the degradation of OsEIL1 through the ubiquitination pathway, indicating the negative regulation of the ET-signaling pathway in response to BPH infestation. An RNA sequencing analysis revealed that a JA biosynthetic pathway-related gene, OsLOX9, was downregulated significantly in the oseil1 mutant. Biochemical analyses, including yeast one-hybrid, dual luciferase, and electrophoretic mobility shift assay, confirmed the direct regulation of OsLOX9 by OsEIL1. This study revealed the synergistic and negative regulation of JA and ET pathways in response to piercing-sucking insect attack. The synergistic mechanism was realized by transcriptional regulation of OsEIL1 on OsLOX9. OsEIL1-OsLOX9 is a novel crosstalk site in these two phytohormone signaling pathways. Topics: Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Regulation, Plant; Hemiptera; Models, Biological; Mutation; Oryza; Oxylipins; Proteolysis; Subcellular Fractions; Ubiquitination | 2020 |
Identification of plant genes putatively involved in the perception of fungal ergosterol-squalene.
Trichoderma biocontrol strains establish a complex network of interactions with plants, in which diverse fungal molecules are involved in the recognition of these fungi as nonpathogenic organisms. These molecules act as microbial-associated molecular patterns that trigger plant responses. Previous studies have reported the importance of ergosterol produced by Trichoderma spp. for the ability of these fungi to induce plant growth and defenses. In addition, squalene, a sterol biosynthetic intermediate, seems to play an important role in these interactions. Here, we analyzed the effect of different concentrations of ergosterol and squalene on tomato (Solanum lycopersicum) growth and on the transcription level of defense- and growth-related genes. We used an RNA-seq strategy to identify several tomato genes encoding predicted pattern recognition receptor proteins or WRKY transcription factors, both of which are putatively involved in the perception and response to ergosterol and squalene. Finally, an analysis of Arabidopsis thaliana mutants lacking the genes homologous to these tomato candidates led to the identification of a WRKY40 transcription factor that negatively regulates salicylic acid-related genes and positively regulates ethylene- and jasmonate-related genes in the presence of ergosterol and squalene. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ergosterol; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Mutation; Mycelium; Nitrogen; Oxylipins; Phenotype; Solanum lycopersicum; Squalene; Transcription Factors; Transcription, Genetic; Trichoderma; Up-Regulation | 2020 |
A polerovirus, Potato leafroll virus, alters plant-vector interactions using three viral proteins.
Potato leafroll virus (PLRV), genus Polerovirus, family Luteoviridae, is a major pathogen of potato worldwide. PLRV is transmitted among host plants by aphids in a circulative-nonpropagative manner. Previous studies have demonstrated that PLRV infection increases aphid fecundity on, and attraction to, infected plants as compared to controls. However, the molecular mechanisms mediating this relationship are still poorly understood. In this study, we measured the impact of PLRV infection on plant-aphid interactions and plant chemistry in two hosts: Solanum tuberosum and Nicotiana benthamiana. Our study demonstrates that PLRV infection attenuates the induction of aphid-induced jasmonic acid and ethylene in S. tuberosum and N. benthamiana. Using transient expression experiments, insect bioassays and chemical analysis, we show that expression of three PLRV proteins (P0, P1, and P7) mediate changes in plant-aphid interactions and inhibition of aphid-induced jasmonic acid and ethylene in N. benthamiana. This study enhances our understanding of the plant-vector-pathogen interface by elucidating new mechanisms by which plant viruses transmitted in a circulative manner can manipulate plant hosts. Topics: Amino Acids; Animals; Aphids; Cyclopentanes; Ethylenes; Fertility; Gene Expression Regulation, Viral; Host-Pathogen Interactions; Insect Vectors; Luteoviridae; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Viruses; Salicylic Acid; Solanum tuberosum; Viral Proteins | 2020 |
An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots.
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development. Topics: Cyclopentanes; Ethylenes; Gene Expression Profiling; Gibberellins; Mycorrhizae; Oxylipins; Plant Growth Regulators; Plant Roots; Plant Shoots; Salicylates; Transcriptome | 2020 |
Interplay between 1-aminocyclopropane-1-carboxylic acid, γ-aminobutyrate and D-glucose in the regulation of high nitrate-induced root growth inhibition in maize.
Nitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced. High nitrate altered nitrogen and carbon metabolism, reducing the content of sugars and inducing the accumulation of Ca Topics: Abscisic Acid; Amino Acids, Cyclic; Carbon; Cyclopentanes; Cytokinins; Ethylenes; Glucose; Indoleacetic Acids; Nitrates; Nitrogen; Oxylipins; Plant Growth Regulators; Plant Roots; Polyamines; Spermidine; Spermine; Zea mays | 2020 |
The rice/maize pathogen Cochliobolus spp. infect and reproduce on Arabidopsis revealing differences in defensive phytohormone function between monocots and dicots.
The fungal genus Cochliobolus describes necrotrophic pathogens that give rise to significant losses on rice, wheat, and maize. Revealing plant mechanisms of non-host resistance (NHR) against Cochliobolus will help to uncover strategies that can be exploited in engineered cereals. Therefore, we developed a heterogeneous pathosystem and studied the ability of Cochliobolus to infect dicotyledons. We report here that C. miyabeanus and C. heterostrophus infect Arabidopsis accessions and produce functional conidia, thereby demonstrating the ability to accept Brassica spp. as host plants. Some ecotypes exhibited a high susceptibility, whereas others hindered the necrotrophic disease progression of the Cochliobolus strains. Natural variation in NHR among the tested Arabidopsis accessions can advance the identification of genetic loci that prime the plant's defence repertoire. We found that applied phytotoxin-containing conidial fluid extracts of C. miyabeanus caused necrotic lesions on rice leaves but provoked only minor irritations on Arabidopsis. This result implies that C. miyabeanus phytotoxins are insufficiently adapted to promote dicot colonization, which corresponds to a retarded infection progression. Previous studies on rice demonstrated that ethylene (ET) promotes C. miyabeanus infection, whereas salicylic acid (SA) and jasmonic acid (JA) exert a minor function. However, in Arabidopsis, we revealed that the genetic disruption of the ET and JA signalling pathways compromises basal resistance against Cochliobolus, whereas SA biosynthesis mutants showed a reduced susceptibility. Our results refer to the synergistic action of ET/JA and indicate distinct defence systems between Arabidopsis and rice to confine Cochliobolus propagation. Moreover, this heterogeneous pathosystem may help to reveal mechanisms of NHR and associated defensive genes against Cochliobolus infection. Topics: Arabidopsis; Ascomycota; Cyclopentanes; Disease Resistance; Disease Susceptibility; Ethylenes; Oryza; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Zea mays | 2020 |
Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera.
In response to infestation by herbivores, rice plants rapidly biosynthesize defense compounds by activating a series of defense-related pathways. However, which defensive compounds in rice are effective against herbivores remains largely unknown. We found that the infestation of white-backed planthopper (WBPH) Sogatella furcifera gravid females significantly increased levels of jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and H Topics: Agmatine; Animals; Coumaric Acids; Cyclopentanes; Ethylenes; Female; Hemiptera; Herbivory; Host-Parasite Interactions; Hydrogen Peroxide; Isoleucine; Oryza; Oxylipins; Plant Diseases; Putrescine; Spermidine; Tyramine | 2020 |
Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita.
The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown.. In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as "plant-pathogen interaction" and "plant hormone signal transduction". Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca. Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca Topics: Animals; Calcium; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Gene Ontology; Heat-Shock Proteins; Host-Parasite Interactions; Oxylipins; Plant Proteins; Plant Roots; Reactive Oxygen Species; RNA-Seq; Salicylic Acid; Signal Transduction; Solanum; Temperature; Transcription Factors; Transcriptome; Tylenchoidea | 2020 |
Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana.
Expansins are encoded by some phytopathogenic bacteria and evidence indicates that they act as virulence factors for host infection. Here we analysed the expression of exl1 by Pectobacterium brasiliense and Pectobacterium atrosepticum. In both, exl1 gene appears to be under quorum sensing control, and protein Exl1 can be observed in culture medium and during plant infection. Expression of exl1 correlates with pathogen virulence, where symptoms are reduced in a Δexl1 mutant strain of P. atrosepticum. As well as Δexl1 exhibiting less maceration of potato plants, fewer bacteria are observed at distance from the inoculation site. However, bacteria infiltrated into the plant tissue are as virulent as the wild type, suggesting that this is due to alterations in the initial invasion of the tissue. Additionally, swarming from colonies grown on MacConkey soft agar was delayed in the mutant in comparison to the wild type. We found that Exl1 acts on the plant tissue, probably by remodelling of a cell wall component or altering the barrier properties of the cell wall inducing a plant defence response, which results in the production of ROS and the induction of marker genes of the JA, ET and SA signalling pathways in Arabidopsis thaliana. Exl1 inactive mutants fail to trigger such responses. This defence response is protective against Pectobacterium brasiliense and Botrytis cinerea in more than one plant species. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Bacterial; Host-Pathogen Interactions; Oxylipins; Pectobacterium; Quorum Sensing; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Virulence; Virulence Factors | 2020 |
Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings.
Leaf-vegetable sweetpotato is an important cash crop that is of high nutritional value. Cuttage is the most convenient method for large-scale propagation. However, the rate and number of adventitious roots (ARs) formation vary significantly among different cultivar cuttings. In this study, two varieties, NC1 and FC13-14, were used to compare the rate of ARs formation. The cumulative results of root morphology showed that in NC1 total root length, total root surface area, total root volume, and root tips were 3.7, 3.5, 3.2, and 2.4 times greater, respectively, than those of FC13-14 at 7 d, indicating that the ARs formation and growth were faster in NC1. In addition, the biomass of aboveground and underground parts in NC1 was 3.6 and 1.3 times more, respectively, than that of FC13-14 at 7 d after cutting, suggesting that the rapid ARs formation rate contributed to the growth and yield of stems and leaves. The analysis of plant water potential showed that NC1 exhibiting higher water potential prevented leaf wilting. Gene expression levels of 22 root-related genes revealed differential expression during different developmental periods. Interestingly, YUCCA family genes had elevated transcript abundance at 0, 12, 24, and 36 h. Moreover, analysis of hormones including indole-3-acetic acid (IAA), ethylene (ETH), abscisic acid (ABA), brassinolide (BR), jasmonic acid (JA), gibberellin (GA), and cytokinin (CTK) revealed varied contents during different developmental stages. Cumulative evidence demonstrated that gene expression profiles and hormone content of IAA, ETH, and BR were significantly higher in NC1 roots than in FC13-14 roots following all time periods, while the amount of JA increased and was higher in FC13-14 than in NC1 from 0 to 72 h. This indicates that IAA, BR, and ETH play positive roles and JA has a negative effect on ARs formation. Moreover, ETH takes effect earlier than BR, while IAA and JA have functions throughout the whole process. The findings above were validated by the application of exogenous hormones and hormone synthesis inhibitors. This study reveals the preliminary regulation of ARs formation in leaf-vegetable sweetpotato cuttings and thus contributes to further clarification of the molecular mechanism of multiple hormone interactions. Topics: Abscisic Acid; Cyclopentanes; Cytokinins; Ethylenes; Gibberellins; Ipomoea batatas; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Roots; Vegetables | 2020 |
Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees.
The roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra trees growing in the drylands of Oman were studied. On March 18 (Experiment 1) and September 17 (Experiment 2), 2018, 32-year-old B. sacra trees with multiple trunks were selected at the Agricultural Experiment Station, Sultan Qaboos University, Oman. Various lanolin pastes containing Ethrel, an ethylene-releasing compound; methyl jasmonate; sodium salicylate; and combinations of these compounds were applied to debarked wounds 15 mm in diameter on the trunks. After a certain period, the frankincense resin secreted from each wound was harvested and weighed. The anatomical characteristics of the resin ducts were also studied in the bark tissue near the upper end of each wound. The combination of Ethrel and methyl jasmonate greatly enhanced frankincense resin production within 7 days in both seasons. The application of methyl jasmonate alone, sodium salicylate alone or a combination of both did not affect resin production. These findings suggest a high possibility of artificial enhancement of frankincense resin production by the combined application of Ethrel and methyl jasmonate to B. sacra trees. Topics: Boswellia; Cyclopentanes; Ethylenes; Frankincense; Oman; Oxylipins; Resins, Plant; Salicylic Acid | 2020 |
AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea.
Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid-ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Carboxylic Ester Hydrolases; Cyclopentanes; Defensins; Escherichia coli; Ethylenes; Gene Expression; Isoenzymes; Oxylipins; Pectins; Plant Diseases; Promoter Regions, Genetic; Recombinant Proteins; Saccharomycetales | 2020 |
Vitamin E Is Superior to Vitamin C in Delaying Seedling Senescence and Improving Resistance in Arabidopsis Deficient in Macro-Elements.
Nitrogen (N), phosphorus (P), and potassium (K) are three essential macro-elements for plant growth and development. Used to improve yield in agricultural production, the excessive use of chemical fertilizers often leads to increased production costs and ecological environmental pollution. Vitamins C and E are antioxidants that play an important role in alleviating abiotic stress. However, there are few studies on alleviating oxidative stress caused by macro-element deficiency. Here, we used Arabidopsis vitamin E synthesis-deficient mutant Topics: Antioxidants; Arabidopsis; Arabidopsis Proteins; Ascorbic Acid; Chlorophyll; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Malondialdehyde; Oxidative Stress; Oxylipins; Plant Diseases; Plant Leaves; Reactive Oxygen Species; Seedlings; Seeds; Signal Transduction; Time Factors; Vitamin E | 2020 |
Submergence deactivates wound-induced plant defence against herbivores.
Flooding is a common and critical disaster in agriculture, because it causes defects in plant growth and even crop loss. An increase in herbivore populations is often observed after floods, which leads to additional damage to the plants. Although molecular mechanisms underlying the plant responses to flooding have been identified, how plant defence systems are affected by flooding remains poorly understood. Herein, we show that submergence deactivates wound-induced defence against herbivore attack in Arabidopsis thaliana. Submergence rapidly suppressed the wound-induced expression of jasmonic acid (JA) biosynthesis genes, resulting in reduced JA accumulation. While plants exposed to hypoxia in argon gas exhibited similar reduced wound responses, the inhibitory effects were initiated after short-term submergence without signs for lack of oxygen. Instead, expression of ethylene-responsive genes was increased after short-term submergence. Blocking ethylene signalling by ein2-1 mutation partially restored suppressed expression of several wound-responsive genes by submergence. In addition, submergence rapidly removed active markers of histone modifications at a gene locus involved in JA biosynthesis. Our findings suggest that submergence inactivates defence systems of plants, which would explain the proliferation of herbivores after flooding. Topics: Animals; Arabidopsis; Butterflies; Cell Hypoxia; Cyclopentanes; Ethylenes; Floods; Gene Expression Regulation, Plant; Herbivory; Mutation; Oxylipins; Plant Growth Regulators; Plant Proteins | 2020 |
Transcriptional reprogramming of major defense-signaling pathways during defense priming and sugarcane-Colletotrichum falcatum interaction.
Red rot caused by Colletotrichum falcatum poses a serious threat to sugarcane cultivation in many tropical and sub-tropical countries. Deciphering the molecular network of major defense-signaling pathways in sugarcane cultivars with varying red rot resistance is essential to elucidate the phenomenon of defense priming exerted by resistance inducers. Therefore, in this study, expression pattern of transcripts coding for major defense-signaling pathway regulatory genes was profiled during compatible and incompatible interactions and in response to defense priming using qRT-PCR. Candidate genes that were profiled are involved in or related to hypersensitive response and reactive oxygen species production (HR/ROS), salicylic acid (SA), and jasmonic acid/ethylene (JA/ET) pathways. For compatible and incompatible interactions, susceptible (CoC 671), field tolerant (Co 86032) and resistant (Co 93009) sugarcane cultivars were used, whereas for defense priming, benzothiadiazole (BTH) and the pathogen-associated molecular patterns (PAMPs) of C. falcatum viz., CfEPL1 (eliciting plant response-like) and CfPDIP1 (plant defense inducing protein) were used in CoC 671 cultivar. Results indicated that the master regulator of defense pathways, nonexpressor of pathogenesis-related genes 1 (NPR1) was highly upregulated in incompatible interactions (in both Co 86032 and Co 93009) than the compatible interaction along with SA pathway-associated genes. Similarly, in response to defense priming with BTH, CfEPL1 and CfPDIP1, only the SA pathway-associated genes showed considerable upregulation at 0 h post inoculation (hpi) and other intermittent time points. Overall, this study showed that SA-mediated defense pathway is the most predominant pathway reprogrammed during priming with BTH, CfEPL1 and CfPDIP1 and substantiated the earlier findings that these agents indeed induce systemic resistance against red rot of sugarcane. Topics: Colletotrichum; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Plant Proteins; Reactive Oxygen Species; Saccharum; Salicylic Acid; Signal Transduction | 2020 |
Comparative Transcriptome Analysis of Rutabaga (
Clubroot, caused by Topics: Brassica napus; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Genes, Plant; Models, Biological; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Tumors; Plasmodiophorida; RNA, Plant; Salicylic Acid; Stress, Physiological | 2020 |
Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis.
Plant defense responses to biotic stresses are complex biological processes, all governed by sophisticated molecular regulations. Induced systemic resistance (ISR) is one of these defense mechanisms where beneficial bacteria or fungi prime plants to resist pathogens or pest attacks. In ISR, the defense arsenal in plants remains dormant and it is only triggered by an infection, allowing a better allocation of plant resources. Our group recently described that the well-known beneficial bacterium Paraburkholderia phytofirmans PsJN is able to induce Arabidopsis thaliana resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 through ISR, and that ethylene, jasmonate and salicylic acid are involved in this protection. Nevertheless, the molecular networks governing this beneficial interaction remain unknown. To tackle this issue, we analyzed the temporal changes in the transcriptome of PsJN-inoculated plants before and after being infected with Pst DC3000. These data were used to perform a gene network analysis to identify highly connected transcription factors. Before the pathogen challenge, the strain PsJN regulated 405 genes (corresponding to 1.8% of the analyzed genome). PsJN-inoculated plants presented a faster and stronger transcriptional response at 1-hour post infection (hpi) compared with the non-inoculated plants, which presented the highest transcriptional changes at 24 hpi. A principal component analysis showed that PsJN-induced plant responses to the pathogen could be differentiated from those induced by the pathogen itself. Forty-eight transcription factors were regulated by PsJN at 1 hpi, and a system biology analysis revealed a network with four clusters. Within these clusters LHY, WRKY28, MYB31 and RRTF1 are highly connected transcription factors, which could act as hub regulators in this interaction. Concordantly with our previous results, these clusters are related to jasmonate, ethylene, salicylic, acid and ROS pathways. These results indicate that a rapid and specific response of PsJN-inoculated plants to the virulent DC3000 strain could be the pivotal element in the protection mechanism. Topics: Arabidopsis; Burkholderiaceae; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Regulatory Networks; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Principal Component Analysis; Pseudomonas syringae; Salicylic Acid; Transcription Factors; Transcriptome | 2019 |
The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity.
Polycomb repressive complexes (PRCs) have been traditionally associated with the regulation of developmental processes in various organisms, including higher plants. However, similar to other epigenetic regulators, there is accumulating evidence for their role in the regulation of stress and immune-related pathways. In the current study we show that the PRC1 protein LHP1 is required for the repression of the MYC2 branch of jasmonic acid (JA)/ethylene (ET) pathway of immunity. Loss of LHP1 induces the reduction in H3K27me3 levels in the gene bodies of ANAC019 and ANAC055, as well as some of their targets, leading to their transcriptional upregulation. Consistently, increased expression of these two transcription factors leads to the misregulation of several of their genomic targets. The lhp1 mutant mimics the MYC2, ANAC019, and ANAC055 overexpressers in several of their phenotypes, including increased aphid resistance, abscisic acid (ABA) sensitivity and drought tolerance. In addition, like the MYC2 and ANAC overexpressers, lhp1 displays reduced salicylic acid (SA) content caused by a deregulation of ICS1 and BSMT1, as well as increased susceptibility to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. Together, our results indicate that LHP1 regulates the expression of stress-responsive genes as well as the homeostasis and responses to the stress hormones SA and ABA. This protein emerges as a key chromatin player fine tuning the complex balance between developmental and stress-responsive processes. Topics: Abscisic Acid; Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Immunity; Polycomb-Group Proteins; Pseudomonas syringae; Salicylic Acid; Transcription Factors; Transcriptome | 2019 |
Transcriptomic perspective on extracellular ATP signaling: a few curious trifles.
Extracellular ATP is perceived by the purinoceptor P2K1, leading to induction of defense response in plants. Previously, we described the transcriptomic response to extracellular ATP in wild-type Arabidopsis seedlings and mutants of classical defense hormone signaling pathways (Jewell et al., 2019, Plant Physiol. 179: 1144-58), in which extracellular ATP was found to induce defense-related genes independently and also along with other defense signaling pathways. In the present study, we provide further analysis and discussion of the data that we neglected to describe in the previous transcriptomics report. Briefly, we describe transcriptomic differences between a Topics: Adenosine Triphosphate; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Protein Kinases; Salicylates; Signal Transduction; Transcriptome | 2019 |
Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato.
Multiprotein bridging factor 1 s (MBF1s) are members of the transcriptional co-activator family that have involved in plant growth, development and stress responses. However, little is known about the Solanum lycopersicum MBF1 (SlMBF1) gene family.. In total, five SlMBF1 genes were identified based on the tomato reference genome, and these genes were mapped to five chromosomes. All of the SlMBF1 proteins were highly conserved, with a typical MBF1 domain and helix-turn-helix_3 domain. In addition, the promoter regions of the SlMBF1 genes have various stress and hormone responsive cis-regulatory elements. Encouragingly, the SlMBF1 genes were expressed with different expression profiles in different tissues and responded to various stress and hormone treatments. The biological function of SlMBF1c was further identified through its overexpression in tomato, and the transgenic tomato lines showed increased susceptibility to Botrytis cinerea (B. cinerea). Additionally, the expression patterns of salicylic acid (SA)-, jasmonic acid (JA)- and ethylene (ET)- mediated defense related genes were altered in the transgenic plants.. Our comprehensive analysis provides valuable information for clarifying the evolutionary relationship of the SlMBF1 members and their expression patterns in different tissues and under different stresses. The overexpression of SlMBF1c decreased the resistance of tomato to B. cinerea through enhancing the gene expression of the SA-mediated signaling pathway and depressing JA/ET-mediated signaling pathways. These results will facilitate future functional studies of the transcriptional co-activator family. Topics: Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Multigene Family; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Stress, Physiological; Transcription Factors | 2019 |
Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
Topics: Albinism, Oculocutaneous; ATP Synthetase Complexes; Cellular Senescence; Chlorophyll A; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Gene Regulatory Networks; Genes, Plant; Oxylipins; Photosystem II Protein Complex; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Transcription Factors; Zea mays | 2019 |
Dual RNA Sequencing of
Topics: Ascomycota; Calcium Signaling; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Ontology; Genes, Plant; Host-Pathogen Interactions; Models, Biological; Oxylipins; Plant Diseases; Sequence Analysis, RNA; Time Factors; Up-Regulation; Vitis | 2019 |
A novel Arabidopsis pathosystem reveals cooperation of multiple hormonal response-pathways in host resistance against the global crop destroyer Macrophomina phaseolina.
Dubbed as a "global destroyer of crops", the soil-borne fungus Macrophomina phaseolina (Mp) infects more than 500 plant species including many economically important cash crops. Host defenses against infection by this pathogen are poorly understood. We established interactions between Mp and Arabidopsis thaliana (Arabidopsis) as a model system to quantitatively assess host factors affecting the outcome of Mp infections. Using agar plate-based infection assays with different Arabidopsis genotypes, we found signaling mechanisms dependent on the plant hormones ethylene, jasmonic acid and salicylic acid to control host defense against this pathogen. By profiling host transcripts in Mp-infected roots of the wild-type Arabidopsis accession Col-0 and ein2/jar1, an ethylene/jasmonic acid-signaling deficient mutant that exhibits enhanced susceptibility to this pathogen, we identified hundreds of genes potentially contributing to a diverse array of defense responses, which seem coordinated by complex interplay between multiple hormonal response-pathways. Our results establish Mp/Arabidopsis interactions as a useful model pathosystem, allowing for application of the vast genomics-related resources of this versatile model plant to the systematic investigation of previously understudied host defenses against a major crop plant pathogen. Topics: Arabidopsis; Ascomycota; Crops, Agricultural; Cyclopentanes; Ethylenes; Genes, Plant; Host-Pathogen Interactions; Mutation; Oxylipins; Plant Roots; Salicylic Acid; Signal Transduction | 2019 |
BIG regulates stomatal immunity and jasmonate production in Arabidopsis.
Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Calmodulin-Binding Proteins; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oxylipins; Plant Immunity; Plant Stomata; Salicylic Acid | 2019 |
The elicitin β-cryptogein's activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions.
The level of resistance induced in different tomato genotypes after β-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to β-cryptogein (β-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied β-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with β-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, β-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here β-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops. Topics: Cyclopentanes; Ethylenes; Fungal Proteins; Host-Pathogen Interactions; Hydrogen Peroxide; Oxylipins; Phytophthora; Plant Diseases; Plant Growth Regulators; Plant Leaves; Pythium; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Solanum lycopersicum | 2019 |
Jasmonic acid and ethylene are involved in the accumulation of osmotin in germinating tomato seeds.
The expression of SlNP24 encoding osmotin was studied in germinating tomato seeds Solanum lycopersicum L. cv. Moneymaker. The results show that the accumulation of the transcripts of SlNP24 and its potential upstream regulator TERF1 encoding an ethylene response factor was induced by ethylene and methyl jasmonate in germinating tomato seeds. There was no effect of gibberellins on the expression of the genes studied. The expression of SlNP24 was localized in the micropylar region of the endosperm of tomato seeds. The promoter of tomato osmotin was active in the endosperm cells of transgenic Arabidopsis thaliana seeds, which contain reporter genes under control of SlNP24 promoter. The activity of SlNP24 promoter in A. thaliana reporter line seeds was visible when the expression of its ortholog gene in A. thaliana (AtOMS34) was observed. The mechanism of induction and a possible role of NP24 in germinating tomato seeds are discussed. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Germination; Oxylipins; Plant Proteins; Plants, Genetically Modified; Real-Time Polymerase Chain Reaction; Seeds; Solanum lycopersicum | 2019 |
The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll.et Hemsl rhizome bud.
We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA Topics: Abscisic Acid; Brassinosteroids; Cell Wall; Cluster Analysis; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Regulatory Networks; Gibberellins; Indoleacetic Acids; Medicine, Chinese Traditional; Oxylipins; Plant Dormancy; Plant Growth Regulators; Plant Proteins; Polygonatum; Rhizome; Salicylic Acid; Signal Transduction; Steroids, Heterocyclic; Tryptophan Synthase | 2019 |
Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways.
ATP is not only an essential metabolite of cellular biochemistry but also acts as a signal in the extracellular milieu. In plants, extracellular ATP is monitored by the purinergic receptor P2K1. Recent studies have revealed that extracellular ATP acts as a damage-associated molecular pattern in plants, and its signaling through P2K1 is important for mounting an effective defense response against various pathogenic microorganisms. Biotrophic and necrotrophic pathogens attack plants using different strategies, to which plants respond accordingly with salicylate-based or jasmonate/ethylene-based defensive signaling, respectively. Interestingly, defense mediated by P2K1 is effective against pathogens of both lifestyles, raising the question of the level of interplay between extracellular ATP signaling and that of jasmonate, ethylene, and salicylate. To address this issue, we analyzed ATP-induced transcriptomes in wild-type Arabidopsis ( Topics: Adenosine Triphosphate; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Salicylates; Seedlings; Signal Transduction; Transcriptome | 2019 |
Differential gene expression in two grapevine cultivars recovered from "flavescence dorée".
The biological bases of recovery of two grapevine cultivars, Nebbiolo and Barbera, showing different susceptibility and recovery ability to "flavescence dorée" (FD) phytoplasma infection were investigated. The expression over one vegetative season, in FD-recovered and healthy grapevines, of 18 genes involved in defence, hydrogen peroxide and hormone production was verified at two time points. Difference (Δ) between the relative expressions of August and July were calculated for each target gene of both cultivars. The significance of differences among groups assessed by univariate and multivariate statistical methods, and sPLS-DA analyses of the Δ gene expression values, showed that control and recovered grapevines of both cultivars were clearly separated. The Barbera-specific deregulation of defence genes supports a stronger response of this variety, within a general frame of interactions among H Topics: Animals; Cyclopentanes; DNA, Plant; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Hydrogen Peroxide; Oxylipins; Phytoplasma; Plant Diseases; Stress, Psychological; Vitis | 2019 |
Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol.
Green leaf volatiles (GLVs) play a vital role in enhancing herbivore-associated defense responses, but the mechanism by which they precisely regulate such responses is not well understood. (Z)-3-Hexenol (z3HOL), an important component of GLVs, effectively activates the defense of tea plants (Camellia sinensis) against a tea geometrid (TG) Ectropis obliqua Prout. To elucidate the molecular mechanisms of defense activation by z3HOL, RNA-Sequencing was employed to investigate the effect of z3HOL on transcriptome responses to TG in tea plants. A total of 318 upregulated genes were identified, and expression of 10 unigenes was validated by quantitative real-time PCR. Among these 318 upregulated genes, 56 were defense-related, including 6 key enzyme genes in jasmonic acid, and ethylene biosynthesis, 24 signal transduction genes, and 12 insect-responsive transcription factors. Most of the defense-related genes are induced by JA, TG, or wounding treatments, suggesting that JA signaling plays a vital role in z3HOL-induced tea defense against TG. Topics: Animals; Camellia sinensis; Cyclopentanes; Ethylenes; Herbivory; Hexanols; Larva; Moths; Oxylipins; Transcriptome | 2019 |
Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber.
Trichoderma spp. are effective biocontrol agents for many plant pathogens, thus the mechanism of Trichoderma-induced plant resistance is not fully understood. In this study, a novel Trichoderma strain was identified, which could promote plant growth and reduce the disease index of gray mold caused by Botrytis cinerea in cucumber. To assess the impact of Trichoderma inoculation on the plant response, a multi-omics approach was performed in the Trichoderma-inoculated cucumber plants through the analyses of the plant transcriptome, proteome, and phytohormone content.. A novel Trichoderma strain was identified by morphological and molecular analysis, here named T. longibrachiatum H9. Inoculation of T. longibrachiatum H9 to cucumber roots promoted plant growth in terms of root length, plant height, and fresh weight. Root colonization of T. longibrachiatum H9 in the outer layer of epidermis significantly inhibited the foliar pathogen B. cinerea infection in cucumber. The plant transcriptome and proteome analyses indicated that a large number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified in cucumber plants 96 h post T. longibrachiatum H9 inoculation. Up-regulated DEGs and DEPs were mainly associated with defense/stress processes, secondary metabolism, and phytohormone synthesis and signaling, including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), in the T. longibrachiatum H9-inoculated cucumber plants in comparison to untreated plants. Moreover, the JA and SA contents significantly increased in cucumber plants with T. longibrachiatum H9 inoculation.. Application of T. longibrachiatum H9 to the roots of cucumber plants effectively promoted plant growth and significantly reduced the disease index of gray mold caused by B. cinerea. The analyses of the plant transcriptome, proteome and phytohormone content demonstrated that T. longibrachiatum H9 mediated plant systemic resistance to B. cinerea challenge through the activation of signaling pathways associated with the phytohormones JA/ET and SA in cucumber. Topics: Biomarkers; Cucumis sativus; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Proteomics; Salicylic Acid; Signal Transduction; Transcriptome; Trichoderma | 2019 |
A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection.
A halotolerant rhizobacteria, Klebsiella species (referred to MBE02), was identified that had a growth stimulation effect on peanut. To gain mechanistic insights into how molecular components were reprogrammed during the interaction of MBE02 and peanut roots, we performed deep RNA-sequencing. In total, 1260 genes were differentially expressed: 979 genes were up-regulated, whereas 281 were down-regulated by MBE02 treatment as compared to uninoculated controls. A large component of the differentially regulated genes were related to phytohormone signalling. This included activation of a significant proportion of genes involved in jasmonic acid, ethylene and pathogen-defense signalling, which indicated a role of MBE02 in modulating plant immunity. In vivo and in vitro pathogenesis assays demonstrated that MBE02 treatment indeed provide fitness benefits to peanut against Aspergillus infection under controlled as well as field environment. Further, MBE02 directly reduced the growth of a wide range of fungal pathogens including Aspergillus. We also identified possible molecular components involved in rhizobacteria-mediated plant protection. Our results show the potential of MBE02 as a biocontrol agent in preventing infection against several fungal phytopathogens. Topics: Arabidopsis; Arachis; Cyclopentanes; Disease Resistance; Ethylenes; Fungi; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Plant; Klebsiella; Mycoses; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Roots; RNA-Seq; Signal Transduction | 2019 |
Assessment of the Efficacy and Mode of Action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection Against Viral Disease.
Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase Topics: Cyclopentanes; Disease Resistance; Ethylenes; Nicotiana; Oxylipins; Salicylic Acid; Thiadiazoles; Tobamovirus | 2019 |
Single-cell damage elicits regional, nematode-restricting ethylene responses in roots.
Plants are exposed to cellular damage by mechanical stresses, herbivore feeding, or invading microbes. Primary wound responses are communicated to neighboring and distal tissues by mobile signals. In leaves, crushing of large cell populations activates a long-distance signal, causing jasmonate production in distal organs. This is mediated by a cation channel-mediated depolarization wave and is associated with cytosolic Ca Topics: Animals; Arabidopsis; Calcium Signaling; Cyclopentanes; Ethylenes; Host-Parasite Interactions; Nematoda; Oxylipins; Plant Roots; Plants, Genetically Modified; Reactive Oxygen Species; Single-Cell Analysis; Stress, Mechanical; Stress, Physiological; Time-Lapse Imaging | 2019 |
Topics: Basidiomycota; Biosynthetic Pathways; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Host Specificity; Host-Pathogen Interactions; Oxylipins; Plant Growth Regulators; Plant Roots; Plants; Time Factors | 2019 |
Ethylene response factor NtERF91 positively regulates alkaloid accumulations in tobacco (Nicotiana tabacum L.).
Tobacco alkaloid metabolism is regulated by various transcription factors (TFs). Here, we have characterized a non-NIC2 locus gene, Ethylene Response Factor 91 (ERF91), function in regulation of alkaloid accumulation in tobacco. NtERF91 was preferentially expressed in roots and induced by jasmonic acid. Additionally, NtERF91 was able to in vitro bind to the NtPMT2 and NtQPT2 promoters via directly targeting the GCC-box elements and transactivate NtQPT2 gene expression. Ectopic overexpression of NtERF91 not only increased the expression of most nicotine biosynthetic genes, but also altered alkaloid accumulation profile, resulting in dramatically anatabine accumulation. We conclude that NtERF91 plays an overlapped but distinct role in regulating tobacco alkaloid accumulations. Topics: Alkaloids; Amino Acid Sequence; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Nicotiana; Nicotine; Oxylipins; Phylogeny; Plant Growth Regulators; Plant Proteins; Transcription Factors; Transcriptional Activation | 2019 |
Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato.
Interplay of hormones with reactive oxygen species (ROS) fine-tunes the response of plants to stress; however, the crosstalk between brassinosteroids (BRs) and ROS in nematode resistance is unclear. In this study, we found that low BR biosynthesis or lack of BR receptor increased, whilst exogenous BR decreased the susceptibility of tomato plants to Meloidogyne incognita. Hormone quantification coupled with hormone mutant complementation experiments revealed that BR did not induce the defence response by triggering salicylic acid (SA), jasmonic acid/ethylene (JA/ET) or abscisic acid (ABA) signalling pathway. Notably, roots of BR-deficient plants had decreased apoplastic ROS accumulation, transcript of RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1) and WHITEFLY INDUCED1 (WFI1), and reduced activation of mitogen-activated protein kinase 1/2 (MPK1/2) and MPK3. Silencing of RBOH1, WFI1, MPK1, MPK2 and MPK3 all increased the root susceptibility to nematode and attenuated BR-induced resistance against the nematode. Significantly, suppressed transcript of RBOH1 compromised BR-induced activation of MPK1/2 and MPK3. These results strongly suggest that RBOH-dependent MPK activation is involved in the BR-induced systemic resistance against the nematode. Topics: Abscisic Acid; Animals; Brassinosteroids; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Mitogen-Activated Protein Kinases; NADPH Oxidases; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Tylenchoidea | 2018 |
Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana.
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. Topics: Arabidopsis; Cell Proliferation; Cyclopentanes; Disease Resistance; Erwinia amylovora; Ethylenes; Glucans; Ions; Mutation; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction | 2018 |
Description of the Nicotiana benthamiana-Cercospora nicotianae Pathosystem.
Nicotiana benthamiana is a valuable model organism in plant biology research. This report describes its extended applicability in the field of molecular plant pathology by introducing a nonbiotrophic fungal pathogen Cercospora nicotianae that can be conveniently used under laboratory conditions, consistently induces a necrotic leaf spot disease on Nicotiana benthamiana, and is specialized on solanaceous plants. Our inoculation studies showed that C. nicotianae more effectively colonizes N. benthamiana than its conventional host, N. tabacum. The functions of two critical regulators of host immunity, coronatine-insensitive 1 (COI1) and ethylene-insensitive 2 (EIN2), were studied in N. benthamiana using Tobacco rattle virus-based virus-induced gene silencing (VIGS). Perturbation of jasmonic acid or ethylene signaling by VIGS of either COI1 or EIN2, respectively, resulted in markedly increased Cercospora leaf spot symptoms on N. benthamiana plants. These results suggest that the N. benthamiana-C. nicotianae host-pathogen interaction is a prospective but hitherto unutilized pathosystem for studying gene functions in diseased plants. Topics: Ascomycota; Cyclopentanes; Ethylenes; Host-Pathogen Interactions; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Signal Transduction | 2018 |
Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22.
Bacillus cereus AR156 (AR156) is a plant growth-promoting rhizobacterium capable of inducing systemic resistance to Pseudomonas syringae pv. tomato in Arabidopsis thaliana. Here, we show that, when applied to Arabidopsis leaves, AR156 acted similarly to flg22, a typical pathogen-associated molecular pattern (PAMP), in initiating PAMP-triggered immunity (PTI). AR156-elicited PTI responses included phosphorylation of MPK3 and MPK6, induction of the expression of defense-related genes PR1, FRK1, WRKY22, and WRKY29, production of reactive oxygen species, and callose deposition. Pretreatment with AR156 still significantly reduced P. syringae pv. tomato multiplication and disease severity in NahG transgenic plants and mutants sid2-2, jar1, etr1, ein2, npr1, and fls2. This suggests that AR156-induced PTI responses require neither salicylic acid, jasmonic acid, and ethylene signaling nor flagella receptor kinase FLS2, the receptor of flg22. On the other hand, AR156 and flg22 acted in concert to differentially regulate a number of AGO1-bound microRNAs that function to mediate PTI. A full-genome transcriptional profiling analysis indicated that AR156 and flg22 activated similar transcriptional programs, coregulating the expression of 117 genes; their concerted regulation of 16 genes was confirmed by real-time quantitative polymerase chain reaction analysis. These results suggest that AR156 activates basal defense responses to P. syringae pv. tomato in Arabidopsis, similarly to flg22. Topics: Arabidopsis; Arabidopsis Proteins; Bacillus cereus; Cyclopentanes; Disease Resistance; Ethylenes; Flagellin; Gene Expression Profiling; Gene Expression Regulation, Plant; MicroRNAs; Oxylipins; Plant Immunity; Pseudomonas syringae; RNA, Messenger; Salicylic Acid; Transcription, Genetic | 2018 |
Molecular Basis of Citrus sunki Susceptibility and Poncirus trifoliata Resistance Upon Phytophthora parasitica Attack.
Coevolution has shaped the molecular basis of an extensive number of defense mechanisms in plant-pathogen interactions. Phytophthora parasitica, a hemibiothrophic oomycete pathogen and the causal agent of citrus root rot and gummosis, interacts differently with Citrus sunki and Poncirus trifoliata, two commonly favored citrus rootstocks that are recognized as susceptible and resistant, respectively, to P. parasitica. The molecular core of these interactions remains elusive. Here, we provide evidence on the defense strategies employed by both susceptible and resistant citrus rootstocks, in parallel with P. parasitica deployment of effectors. Time course expression analysis (quantitative real-time polymerase chain reaction) of several defense-related genes were evaluated during i) plant disease development, ii) necrosis, and iii) pathogen effector gene expression. In C. sunki, P. parasitica deploys effectors, including elicitins, NPP1 (necrosis-inducing Phytophthora protein 1), CBEL (cellulose-binding elicitor and lectin activity), RxLR, and CRN (crinkler), and, consequently, this susceptible plant activates its main defense signaling pathways that result in the hypersensitive response and necrosis. Despite the strong plant-defense response, it fails to withstand P. parasitica invasion, confirming its hemibiothrophic lifestyle. In Poncirus trifoliata, the effectors were strongly expressed, nevertheless failing to induce any immunity manipulation and disease development, suggesting a nonhost resistance type, in which the plant relies on preformed biochemical and anatomical barriers. Topics: Citrus; Cluster Analysis; Cyclopentanes; Disease Resistance; Disease Susceptibility; Ethylenes; Gene Expression Regulation, Plant; Gene Regulatory Networks; Genes, Plant; Hydrogen Peroxide; Linear Models; Models, Biological; Oxylipins; Phytophthora; Plant Diseases; Poncirus; Salicylic Acid | 2018 |
Solar UV-B radiation and ethylene play a key role in modulating effective defenses against Anticarsia gemmatalis larvae in field-grown soybean.
Solar UV-B radiation has been reported to enhance plant defenses against herbivore insects in many species. However, the mechanism and traits involved in the UV-B mediated increment of plant resistance are unknown in crops species, such as soybean. Here, we studied defense-related responses in undamaged and Anticarsia gemmatalis larvae-damaged leaves of two soybean cultivars grown under attenuated or full solar UV-B radiation. We determined changes in jasmonates, ethylene (ET), salicylic acid, trypsin protease inhibitor activity, flavonoids, and mRNA expression of genes related with defenses. ET emission induced by Anticarsia gemmatalis damage was synergistically increased in plants grown under solar UV-B radiation and was positively correlated with malonyl genistin concentration, trypsin proteinase inhibitor activity and expression of IFS2, and the pathogenesis protein PR2, while was negatively correlated with leaf consumption. The precursor of ET, aminocyclopropane-carboxylic acid, applied exogenously to soybean was sufficient to strongly induce leaf isoflavonoids. Our results showed that in field-grown soybean isoflavonoids were regulated by both herbivory and solar UV-B inducible ET, whereas flavonols were regulated by solar UV-B radiation only and not by herbivory or ET. Our study suggests that, although ET can modulate UV-B-mediated priming of inducible plant defenses, some plant defenses, such as isoflavonoids, are regulated by ET alone. Topics: Abscisic Acid; Animals; Cyclopentanes; Ethylenes; Glycine max; Herbivory; Larva; Moths; Oxylipins; Plant Growth Regulators; Plant Leaves; Salicylic Acid; Ultraviolet Rays | 2018 |
ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response.
Maize (Zea mays) accumulates maize terpenoid phytoalexins (MTPs), kauralexins and zealexins in response to various elicitations. Although the key biosynthetic genes for these have been characterized, the regulatory mechanism remains unclear. Through co-correlation analysis, a transcription factor (TF), ZmWRKY79, was identified as highly correlated with expression of MTP biosynthetic genes. Gene expression analysis indicated that ZmWRKY79 was induced by Fusarium graminearum infection, phytohormone treatment, and multiple stresses. Overexpression of ZmWRKY79 in maize protoplasts increased expression of genes involved in MTP biosynthesis, jasmonic acid and ethylene pathways, and scavenging of reactive oxygen species (ROS). Subsequent transient RNAi in maize protoplast compromised the induction of MTP biosynthetic genes by jasmonic acid and ethylene combined treatment. Such regulation was further demonstrated to be dependent on a W-box or WLE cis-element. Transient overexpression of ZmWRKY79 in tobacco conferred resistance against Rhizoctonia solani infection through reducing ROS production. Our results indicate that MTP biosynthesis is regulated by the common transcription factor ZmWRKY79, which plays a broad role as a potential master regulator in stress response through involvement in phytohormone metabolism or signaling and ROS scavenging. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Phytoalexins; Plant Proteins; Sesquiterpenes; Signal Transduction; Stress, Physiological; Zea mays | 2018 |
Enhancement of apple coloration using jasmonate treatment without sacrificing storage potential.
Apple coloration is very important for most cultivars. The application of jasmonate can effectively enhance the coloration of apple fruit, but it might ruin the fruit's storage potential. Here, we report that applying methyl jasmonate on apple fruit 3 weeks before commercial harvest not only enhanced the fruit coloration but also did not affect its storage potential. Our findings provide important information for enhancing apple coloration using jasmonate. Topics: Acetates; Anthocyanins; Cyclopentanes; Ethylenes; Fruit; Malus; Oxylipins; Pigmentation; Preservation, Biological | 2018 |
Transcriptional evidence for cross talk between JA and ET or SA during root-knot nematode invasion in tomato.
studies have demonstrated that jasmonic acid (JA) reduces root-knot nematode (RKN) infections in tomato plants. RKN invasion is sensed by roots, and root-derived JA signaling activates systemic defense responses, though this is poorly understood. Here, we investigate variations in the RKN-induced transcriptome in scion phloem between two tomato plant grafts: CM/CM ( Lycopersicum esculentum Mill. cv. Castlemart) and CM/ spr2 (a JA-deficient mutant). A total of 8,716 genes were differentially expressed in the scion phloem of the plants with JA-deficient rootstock via RNA sequencing. Among these genes, 535 upregulated and 153 downregulated genes with high copy numbers were identified as significantly differentially expressed. Among them, 34 predicted transcription factor genes were identified. Additionally, we used real-time quantitative PCR to analyze the expression patterns of 42 genes involved in the JA, ethylene, or salicylic acid pathway in phloem under RKN infection. The results suggested that in the absence of JA signaling, the ET signaling pathway is enhanced after RKN infection; however, alterations in the SA signaling pathway were not observed. Topics: Animals; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Ontology; Genetic Association Studies; Nematoda; Oxylipins; Phloem; Plant Diseases; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Transcription, Genetic | 2018 |
The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration.
Breeding for drought-tolerant crops is a pressing issue due to the increasing frequency and duration of droughts caused by climate change. Although important sources of variation for drought tolerance exist in wild relatives, the mechanisms and the key genes controlling tolerance in tomato are little known. The aim of this study is to determine the drought response of the tomato wild relative Solanum pennellii (Sp) compared with the cultivated tomato Solanum lycopersicum (Sl). The paper investigates the physiological and molecular responses in leaves of Sp and Sl plants without stress and moderate drought stress. Significant physiological differences between species were found, with Sp leaves showing greater ability to avoid water loss and oxidative damage. Leaf transcriptomic analysis carried out when leaves did not as yet show visual dehydration symptoms revealed important constitutive expression differences between Sp and Sl species. Genes linked to different physiological and metabolic processes were induced by drought in Sp, especially those involved in N assimilation, GOGAT/GS cycle and GABA-shunt. Up-regulation in Sp of genes linked to JA/ET biosynthesis and signaling pathways was also observed. In sum, genes involved in the amino acid metabolism together with genes linked to ET/JA seem to be key actors in the drought tolerance of the wild tomato species. Topics: Amino Acids; Crops, Agricultural; Cyclopentanes; Dehydration; Droughts; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Oxylipins; Plant Leaves; Plant Proteins; Solanum; Solanum lycopersicum; Stress, Physiological; Water | 2018 |
Leaf stage-associated resistance is correlated with phytohormones in a pathosystem-dependent manner.
It has been reported in several pathosystems that disease resistance can vary in leaves at different stages. However, how general this leaf stage-associated resistance is, and the molecular mechanism(s) underlying it, remain largely unknown. Here, we investigated the effect of leaf stage on basal resistance, effector-triggered immunity (ETI) and nonhost resistance, using eight pathosystems involving the hosts Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana and the pathogens Sclerotinia sclerotiorum, Pseudomonas syringae pv. tabaci, P. syringae pv. tomato DC3000, and Xanthomonas oryzae pv. oryzae (Xoo). We show evidence that leaf stage-associated resistance exists ubiquitously in plants, but with varying intensity at different stages in diverse pathosystems. Microarray expression profiling assays demonstrated that hundreds of genes involved in defense responses, phytohormone biosynthesis and signaling, and calcium signaling, were differentially expressed between leaves at different stages. The Arabidopsis mutants sid1, sid2-3, ein2, jar1-1, aba1 and aao3 lost leaf stage-associated resistance to S. sclerotiorum, and the mutants aba1 and sid2-3 were affected in leaf stage-associated RPS2/AvrRpt2 Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid; Xanthomonas | 2018 |
CaWRKY22 Acts as a Positive Regulator in Pepper Response to
The WRKY web, which is comprised of a subset of WRKY transcription factors (TFs), plays a crucial role in the regulation of plant immunity, however, the mode of organization and operation of this network remains obscure, especially in non-model plants such as pepper ( Topics: Capsicum; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Proteins; Ralstonia solanacearum; Signal Transduction; Transcription Factors | 2018 |
Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor.
Hydroxycinnamic acid amides (HCAAs) are a class of antimicrobial metabolites involved in plant defense against necrotrophic pathogens, including Alternaria brassicicola and Botrytis cinerea. The agmatine coumaryl transferase (AtACT) is the key enzyme that catalyzes the last reaction in the biosynthesis of HCAAs, including p-coumaroylagmatine (CouAgm) and feruloylagmatine in Arabidopsis thaliana. However, the regulatory mechanism of AtACT gene expression is currently unknown. Yeast one-hybrid screening using the AtACT promoter as bait isolated the key positive regulator ORA59 that is involved in jasmonic acid/ethylene (JA/ET)-mediated plant defense responses. AtACT gene expression and HCAAs biosynthesis were synergistically induced by a combination of JA and ET. In the AtACT promoter, two GCC-boxes function equivalently for trans-activation by ORA59 in Arabidopsis protoplasts, and mutation of either GCC-box abolished AtACT mRNA accumulation in transgenic plants. Site-directed mutation analysis demonstrated that the specific Leu residue at position 228 of the ORA59 EDLL motif mainly contributed to its transcriptional activity on AtACT gene expression. Importantly, MEDIATOR25 (MED25) and ORA59 homodimer are also required for ORA59-dependent activation of the AtACT gene. These results suggest that ORA59 and two functionally equivalent GCC-boxes form the regulatory module together with MED25 that enables AtACT gene expression and HCAAs biosynthesis to respond to simultaneous activation of the JA/ET signaling pathways. Topics: Acyltransferases; Agmatine; Arabidopsis; Arabidopsis Proteins; Coumaric Acids; Cyclopentanes; Ethylenes; Oxylipins; Plant Growth Regulators; Signal Transduction; Transcription Factors; Two-Hybrid System Techniques | 2018 |
OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore.
Plants are constantly exposed to a variety of environmental stresses, including herbivory. How plants perceive herbivores on a molecular level is poorly understood. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, are essential for plants to detect external stress signals, and may therefore also be involved in herbivore perception. Here, we employed RNA interference silencing, phytohormone profiling and complementation, as well as herbivore resistance assays, to investigate the requirement of an LRR-RLK for the initiation of rice (Oryza sativa) defenses against the chewing herbivore striped stem borer (SSB) Chilo suppressalis. We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose transcription is strongly up-regulated by SSB attack and treatment with oral secretions of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein kinase (MPK) cascades, and positively regulates defense-related MPKs and WRKY transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-elicited, but not wound-elicited, levels of jasmonic acid and ethylene, trypsin protease inhibitor activity and plant resistance towards SSB. OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of rice. Given the well-documented role of LRR-RLKs in the perception of stress-related molecules, we speculate that OsLRR-RLK1 may be involved in the perception of herbivory-associated molecular patterns. Topics: Animals; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Gene Silencing; Herbivory; Lepidoptera; Leucine-Rich Repeat Proteins; Mastication; Oryza; Oxylipins; Plant Diseases; Plant Proteins; Proteins; Salicylic Acid; Signal Transduction; Transcription Factors | 2018 |
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis.
Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored.. MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2-2 and the JA-signalling mutant coi1-16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression.. The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Darkness; Ethylenes; Indoleacetic Acids; Oxylipins; Plant Cells; Plant Roots; Plant Stems; Seedlings; Signal Transduction; Transcription Factors; Xylem | 2018 |
Transcriptome analysis of an incompatible Persea americana-Phytophthora cinnamomi interaction reveals the involvement of SA- and JA-pathways in a successful defense response.
Phytophthora cinnamomi Rands (Pc) is a hemibiotrophic oomycete and the causal agent of Phytophthora root rot (PRR) of the commercially important fruit crop avocado (Persea americana Mill.). Plant defense against pathogens is modulated by phytohormone signaling pathways such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), auxin and abscisic acid. The role of specific signaling pathways induced and regulated during hemibiotroph-plant interactions has been widely debated. Some studies report SA mediated defense while others hypothesize that JA responses restrict the spread of pathogens. This study aimed to identify the role of SA- and JA- associated genes in the defense strategy of a resistant avocado rootstock, Dusa in response to Pc infection. Transcripts associated with SA-mediated defense pathways and lignin biosynthesis were upregulated at 6 hours post-inoculation (hpi). Results suggest that auxin, reactive oxygen species (ROS) and Ca2+ signaling was also important during this early time point, while JA signaling was absent. Both SA and JA defense responses were shown to play a role during defense at 18 hpi. Induction of genes associated with ROS detoxification and cell wall digestion (β-1-3-glucanase) was also observed. Most genes induced at 24 hpi were linked to JA responses. Other processes at play in avocado at 24 hpi include cell wall strengthening, the formation of phenolics and induction of arabinogalactan, a gene linked to Pc zoospore immobility. This study represents the first transcriptome wide analysis of a resistant avocado rootstock treated with SA and JA compared to Pc infection. The results provide evidence of a biphasic defense response against the hemibiotroph, which initially involves SA-mediated gene expression followed by the enrichment of JA-mediated defense from 18 to 24 hpi. Genes and molecular pathways linked to Pc resistance are highlighted and may serve as future targets for manipulation in the development of PRR resistant avocado rootstocks. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Indoleacetic Acids; Oxylipins; Persea; Phytophthora; Plant Diseases; Plant Proteins; Plant Roots; Salicylic Acid; Signal Transduction | 2018 |
APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling.
Arabidopsis AP2 FAMILY PROTEIN INVOLVED IN DISEASE DEFENSE (APD1) is a member of AP2/EREBP super-family that positively regulates SA biosynthesis and defense against virulent bacterial pathogens. Here we report additional roles of APD1 in plant defense and development. We show that APD1 function is required for light-mediated defense against bacterial pathogens and systemic acquired resistance (SAR). We demonstrate that APD1 function is not required for generating SAR mobile signal at the site of primary inoculation but is required at the distal end for SAR manifestation. In addition, the APD1 function is required for PTI-induced callose deposition, defense against necrotrophic pathogen Botrytis cinerea and Alternaria alternata, which are ethylene (ET) or ethylene-Jasmonate (JA) dependent responses. Development of seedling under dark and ET is partly dependent on APD1. The mutant apd1 plants are non-responsive towards exogenous ACC application regarding apical hook formation and hypocotyl shortening, however, possess WT-like ET-mediated root growth inhibition. JA-mediated root growth inhibition is also impaired in apd1 seedlings. Altogether our results suggest that APD1 impacts multiple aspects of plant growth and development. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Multigene Family; Oxylipins; Signal Transduction; Transcription Factors | 2018 |
Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight.
Fusarium head blight (FHB or scab) caused by Fusarium spp. is a destructive disease of wheat. Since the most effective sources of FHB resistance are typically associated with unfavorable agronomic traits, breeding commercial cultivars that combine desired agronomic traits and a high level of FHB resistance remains a considerable challenge. A better understanding of the molecular mechanisms governing FHB resistance will help to design more efficient and precise breeding strategies. Here, multiple molecular tools and assays were deployed to compare the resistant variety Sumai3 with three regionally adapted Canadian cultivars. Macroscopic and microscopic disease evaluation established the relative level of Type II FHB resistance of the four varieties and revealed that the F. graminearum infection process displayed substantial temporal differences among organs. The rachis was found to play a critical role in preventing F. graminearum spread within spikes. Large-scale, organ-specific RNA-seq at different times after F. graminearum infection demonstrated that diverse defense mechanisms were expressed faster and more intensely in the spikelet of resistant varieties. The roles of plant hormones during the interaction of wheat with F. graminearum was inferred based on the transcriptomic data obtained and the quantification of the major plant hormones. Salicylic acid and jasmonic acid were found to play predominantly positive roles in FHB resistance, whereas auxin and ABA were associated with susceptibility, and ethylene appeared to play a dual role during the interaction with F graminearum. Topics: Abscisic Acid; Cyclopentanes; Disease Resistance; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Indoleacetic Acids; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Principal Component Analysis; RNA, Plant; Salicylic Acid; Sequence Analysis, RNA; Transcriptome; Triticum | 2018 |
Differential Responses of
The conserved mitogen-activated protein kinase (MAPK) cascades play vital roles in plant defense responses against pathogens and insects. In the current study, the expression profiles of 17 Topics: Animals; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Hemiptera; Mitogen-Activated Protein Kinases; Oryza; Oxylipins; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Signal Transduction; Virulence | 2018 |
Comparative Transcriptomic and Physiological Analyses of
Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Medicago sativa; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plant Roots; Salicylic Acid; Stress, Physiological | 2018 |
Patterns of Drought Response of 38 WRKY Transcription Factors of
The WRKY family of transcription factors (TFs) includes a number of transcription-specific groupings that play important roles in plant growth and development and in plant responses to various stresses. To screen for WRKY transcription factors associated with drought stress in Topics: Amino Acid Sequence; Computational Biology; Cyclopentanes; Droughts; Ethylenes; Lyases; Mitogen-Activated Protein Kinases; Oxylipins; Phylogeny; Plant Proteins; Salicylic Acid; Sequence Alignment; Signal Transduction; Stress, Physiological; Transcription Factors; Zanthoxylum | 2018 |
The Elongator complex-associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis.
DEFORMED ROOT AND LEAVES1 (DRL1) is an Arabidopsis homologue of the yeast TOXIN TARGET4 (TOT4)/KILLER TOXIN-INSENSITIVE12 (KTI12) protein that is physically associated with the RNA polymerase II-interacting protein complex named Elongator. Mutations in DRL1 and Elongator lead to similar morphological and molecular phenotypes, suggesting that DRL1 and Elongator may functionally overlap in Arabidopsis. We have shown previously that Elongator plays an important role in both salicylic acid (SA)- and jasmonic acid (JA)/ethylene (ET)-mediated defence responses. Here, we tested whether DRL1 also plays a similar role as Elongator in plant immune responses. Our results show that, although DRL1 partially contributes to SA-induced cytotoxicity, it does not play a significant role in SA-mediated expression of PATHOGENESIS-RELATED genes and resistance to the virulent bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. In contrast, DRL1 is required for JA/ET- and necrotrophic fungal pathogen Botrytis cinerea-induced defence gene expression and for resistance to B. cinerea and Alternaria brassicicola. Furthermore, unlike the TOT4/KTI12 gene which, when overexpressed in yeast, confers zymocin resistance, a phenotype of the tot4/kti12 mutant, overexpression of DRL1 does not change B. cinerea-induced defence gene expression and resistance to this pathogen. Finally, DRL1 contains an N-terminal P-loop and a C-terminal calmodulin (CaM)-binding domain and is a CaM-binding protein. We demonstrate that both the P-loop and the CaM-binding domain are essential for the function of DRL1 in B. cinerea-induced expression of PDF1.2 and ORA59, and in resistance to B. cinerea, suggesting that the function of DRL1 in plant immunity may be regulated by ATP/GTP and CaM binding. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; GTP-Binding Proteins; Oxylipins; Salicylic Acid | 2018 |
Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum.
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa. Topics: Cyclopentanes; Disease Susceptibility; Ethylenes; Fusarium; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Time Factors; Transcription, Genetic | 2017 |
Investigating Proteome and Transcriptome Defense Response of Apples Induced by Yarrowia lipolytica.
A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text] Topics: Cyclopentanes; Electrophoresis, Gel, Two-Dimensional; Ethylenes; Gene Expression Regulation, Plant; Gene Ontology; Genes, Plant; Malus; Models, Biological; Oxylipins; Penicillium; Plant Proteins; Proteome; Salicylic Acid; Signal Transduction; Transcription Factors; Transcriptome; Yarrowia | 2017 |
The highly buffered Arabidopsis immune signaling network conceals the functions of its components.
Plant immunity protects plants from numerous potentially pathogenic microbes. The biological network that controls plant inducible immunity must function effectively even when network components are targeted and disabled by pathogen effectors. Network buffering could confer this resilience by allowing different parts of the network to compensate for loss of one another's functions. Networks rich in buffering rely on interactions within the network, but these mechanisms are difficult to study by simple genetic means. Through a network reconstitution strategy, in which we disassemble and stepwise reassemble the plant immune network that mediates Pattern-Triggered-Immunity, we have resolved systems-level regulatory mechanisms underlying the Arabidopsis transcriptome response to the immune stimulant flagellin-22 (flg22). These mechanisms show widespread evidence of interactions among major sub-networks-we call these sectors-in the flg22-responsive transcriptome. Many of these interactions result in network buffering. Resolved regulatory mechanisms show unexpected patterns for how the jasmonate (JA), ethylene (ET), phytoalexin-deficient 4 (PAD4), and salicylate (SA) signaling sectors control the transcriptional response to flg22. We demonstrate that many of the regulatory mechanisms we resolved are not detectable by the traditional genetic approach of single-gene null-mutant analysis. Similar to potential pathogenic perturbations, null-mutant effects on immune signaling can be buffered by the network. Topics: Arabidopsis; Arabidopsis Proteins; Carboxylic Ester Hydrolases; Cyclopentanes; Ethylenes; Flagellin; Gene Expression Regulation, Plant; Gene Regulatory Networks; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Plant Immunity; Salicylic Acid; Signal Transduction; Transcriptome | 2017 |
The Jasmonate-Activated Transcription Factor MdMYC2 Regulates
The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Topics: Cyclopentanes; Ethylenes; Fruit; Gene Expression Regulation, Plant; Malus; Oxylipins; Plant Proteins; Transcription Factors | 2017 |
Localized micronutrient patches induce lateral root foraging and chemotropism in Nicotiana attenuata.
Nutrients are distributed unevenly in the soil. Phenotypic plasticity in root growth and proliferation may enable plants to cope with this variation and effectively forage for essential nutrients. However, how micronutrients shape root architecture of plants in their natural environments is poorly understood. We used a combination of field and laboratory-based assays to determine the capacity of Nicotiana attenuata to direct root growth towards localized nutrient patches in its native environment. Plants growing in nature displayed a particular root phenotype consisting of a single primary root and a few long, shallow lateral roots. Analysis of bulk soil surrounding the lateral roots revealed a strong positive correlation between lateral root placement and micronutrient gradients, including copper, iron and zinc. In laboratory assays, the application of localized micronutrient salts close to lateral root tips led to roots bending in the direction of copper and iron. This form of chemotropism was absent in ethylene and jasmonic acid deficient lines, suggesting that it is controlled in part by these two hormones. This work demonstrates that directed root growth underlies foraging behavior, and suggests that chemotropism and micronutrient-guided root placement are important factors that shape root architecture in nature. Topics: Cyclopentanes; Ethylenes; Micronutrients; Nicotiana; Oxylipins; Phenotype; Plant Roots; Seedlings; Soil | 2017 |
Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens.
DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H Topics: Animals; Cell Wall; Cellulose; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gene Silencing; Genes, Plant; Hemiptera; Hydrogen Peroxide; Hydroxybenzoates; Lignin; Oryza; Oxylipins; Plant Proteins; Plants, Genetically Modified; RNA, Messenger; Salicylic Acid; Transcription, Genetic | 2017 |
Molecular characterisation of the broad-spectrum resistance to powdery mildew conferred by the Stpk-V gene from the wild species Haynaldia villosa.
A key member of the Pm21 resistance gene locus, Stpk-V, derived from Haynaldia villosa, was shown to confer broad-spectrum resistance to wheat powdery mildew. The present study was planned to investigate the resistance mechanism mediated by Stpk-V. Transcriptome analysis was performed in Stpk-V transgenic plants and recipient Yangmai158 upon Bgt infection, and detailed histochemical observations were conducted. Chromosome location of Stpk-V orthologous genes in Triticeae species was conducted for evolutionary study and over-expression of Stpk-V both in barley and Arabidopsis was performed for functional study. The transcriptome results indicate, at the early infection stage, the ROS pathway, JA pathway and some PR proteins associated with the SA pathway were activated in both the resistant Stpk-V transgenic plants and susceptible Yangmai158. However, at the later infection stage, the genes up-regulated at the early stage were continuously held only in the transgenic plants, and a large number of new genes were also activated in the transgenic plants but not in Yangmai158. Results indicate that sustained activation of the early response genes combined with later-activated genes mediated by Stpk-V is critical for resistance in Stpk-V transgenic plants. Stpk-V orthologous genes in the representative grass species are all located on homologous group six chromosomes, indicating that Stpk-V is an ancient gene in the grasses. Over-expression of Stpk-V enhanced host resistance to powdery mildew in barley but not in Arabidopsis. Our results enable a better understanding of the resistance mechanism mediated by Stpk-V, and establish a solid foundation for its use in cereal breeding as a gene resource. Topics: Arabidopsis; Ascomycota; Cyclopentanes; Disease Resistance; Ethylenes; Genes, Plant; Metabolic Networks and Pathways; Oxylipins; Plant Diseases; Plants, Genetically Modified; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Salicylic Acid; Triticum | 2017 |
Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways.
Fusarium poae has been considered as a minor species among those that cause the FHB disease but in recent years several researchers have documented a high frequency of occurrence in several crops. We evaluated the ability of F. poae to produce symptoms in A. thaliana leaves. Moreover, we analyzed the defense of A. thaliana against F. poae using SA, JA, and ET mutants and we monitored the expression level of genes involved in the main signaling pathways related to plant defense. Symptoms were observed in the inoculated leaves demonstrating the ability of F. poae to infect A. thaliana leaves. Moreover, the npr1-1 mutants presented low symptoms compared to Col-0, etr2-1, and coi1-1 and that the coi1-1 mutant was the most susceptible genotypes followed by etr2-1 genotypes. The RT-PCR revealed that PDF1.2, CHI/PR3, and ERF1, three important JA-ET responsive genes and NPR1 and PR1, which are regulated by SA signaling, were expressed upon F. poae inoculation. Our results suggest that JA and ET could play a key role in Arabidopsis leaves defense against F. poae representing the first evaluation of the response of the main A. thaliana phytohormones involved in plant defense in the presence of F. poae. Topics: Arabidopsis; Cyclopentanes; Disease Resistance; DNA, Fungal; Ethylenes; Fusarium; Gene Expression Regulation, Fungal; Gene Expression Regulation, Plant; Genotype; Mutation; Oxylipins; Plant Leaves; RNA, Fungal; Signal Transduction | 2017 |
In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer.
Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer. Topics: Arabidopsis Proteins; Chitin; Cyclopentanes; Ethylenes; Flagellin; Gene Expression Regulation, Plant; Oxylipins; Plant Roots; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Trans-Activators | 2017 |
Defense Responses in Aspen with Altered Pectin Methylesterase Activity Reveal the Hormonal Inducers of Tyloses.
Tyloses are ingrowths of parenchyma cells into the lumen of embolized xylem vessels, thereby protecting the remaining xylem from pathogens. They are found in heartwood, sapwood, and in abscission zones and can be induced by various stresses, but their molecular triggers are unknown. Here, we report that down-regulation of PECTIN METHYLESTERASE1 (PtxtPME1) in aspen (Populus tremula × tremuloides) triggers the formation of tyloses and activation of oxidative stress. We tested whether any of the oxidative stress-related hormones could induce tyloses in intact plantlets grown in sterile culture. Jasmonates, including jasmonic acid (JA) and methyl jasmonate, induced the formation of tyloses, whereas treatments with salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were ineffective. SA abolished the induction of tyloses by JA, whereas ACC was synergistic with JA. The ability of ACC to stimulate tyloses formation when combined with JA depended on ethylene (ET) signaling, as shown by a decrease in the response in ET-insensitive plants. Measurements of internal ACC and JA concentrations in wild-type and ET-insensitive plants treated simultaneously with these two compounds indicated that ACC and JA regulate each other's concentration in an ET-dependent manner. The findings indicate that jasmonates acting synergistically with ethylene are the key molecular triggers of tyloses. Topics: Amino Acids, Cyclic; Carboxylic Ester Hydrolases; Cellulose; Cyclopentanes; Ethylenes; Hydrogen Peroxide; Oxylipins; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Populus; Salicylic Acid | 2017 |
Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.
Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. Topics: Aluminum; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Malates; Microtubules; Oxylipins; Plant Growth Regulators; Plant Roots; Plants, Genetically Modified; Signal Transduction; Stress, Physiological | 2017 |
Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance.
Paraburkholderia phytofirmans PsJN is a plant growth-promoting rhizobacterium (PGPR) that stimulates plant growth and improves tolerance to abiotic stresses. This study analyzed whether strain PsJN can reduce plant disease severity and proliferation of the virulent strain Pseudomonas syringae pv. tomato DC3000, in Arabidopsis plants, through the activation of induced resistance. Arabidopsis plants previously exposed to strain PsJN showed a reduction in disease severity and pathogen proliferation in leaves compared with noninoculated, infected plants. The plant defense-related genes WRKY54, PR1, ERF1, and PDF1.2 demonstrated increased and more rapid expression in strain PsJN-treated plants compared with noninoculated, infected plants. Transcriptional analyses and functional analysis using signaling mutant plants suggested that resistance to infection by DC3000 in plants treated with strain PsJN involves salicylic acid-, jasmonate-, and ethylene-signaling pathways to activate defense genes. Additionally, activation occurs through a specific PGPR-host recognition, being a necessary metabolically active state of the bacterium to trigger the resistance in Arabidopsis, with a strain PsJN-associated molecular pattern only partially involved in the resistance response. This study provides the first report on the mechanism used by the PGPR P. phytofirmans PsJN to protect A. thaliana against a widespread virulent pathogenic bacterium. Topics: Arabidopsis; Biofilms; Burkholderia; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Mutation; Oxylipins; Plant Diseases; Pseudomonas syringae; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Transcription, Genetic; Virulence | 2017 |
Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato.
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction. Topics: Acetates; Animals; Biological Assay; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Regulation, Plant; Herbivory; Monoterpenes; Mutation; Oxylipins; Plant Diseases; Plant Immunity; Plant Leaves; Plant Proteins; Sesquiterpenes; Solanum lycopersicum; Terpenes; Thysanoptera; Trichomes | 2017 |
ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression.
Hormonal crosstalk is central for tailoring plant responses to the nature of challenges encountered. The role of antagonism between the two major defense hormones, salicylic acid (SA) and jasmonic acid (JA), and modulation of this interplay by ethylene (ET) in favor of JA signaling pathway in plant stress responses is well recognized, but the underlying mechanism is not fully understood. Here, we show the opposing function of two transcription factors, ethylene insensitive3 (EIN3) and EIN3-Like1 (EIL1), in SA-mediated suppression and JA-mediated activation of PLANT DEFENSIN1.2 (PDF1.2). This functional duality is mediated via their effect on protein, not transcript levels of the PDF1.2 transcriptional activator octadecanoid-responsive Arabidopsis59 (ORA59). Specifically, JA induces ORA59 protein levels independently of EIN3/EIL1, whereas SA reduces the protein levels dependently of EIN3/EIL1. Co-infiltration assays revealed nuclear co-localization of ORA59 and EIN3, and split-luciferase together with yeast-two-hybrid assays established their physical interaction. The functional ramification of the physical interaction is EIN3-dependent degradation of ORA59 by the 26S proteasome. These findings allude to SA-responsive reduction of ORA59 levels mediated by EIN3 binding to and targeting of ORA59 for degradation, thus nominating ORA59 pool as a coordination node for the antagonistic function of ET/JA and SA. Topics: Arabidopsis; Arabidopsis Proteins; Cell Nucleus; Cyclopentanes; Defensins; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Genes, Reporter; Models, Biological; Nuclear Proteins; Oxylipins; Protein Binding; Protein Stability; Protein Transport; Proteolysis; RNA, Messenger; Salicylic Acid; Transcription Factors | 2017 |
Induction of SA-signaling pathway and ethylene biosynthesis in Trichoderma harzianum-treated tomato plants after infection of the root-knot nematode Meloidogyne incognita.
Salicylic acid-signaling pathway and ethylene biosynthesis were induced in tomato treated with Trichoderma harzianum when infected by root-knot nematodes and limited the infection by activation of SAR and ethylene production. Soil pre-treatment with Trichoderma harzianum (Th) strains ITEM 908 (T908) and T908-5 decreased susceptibility of tomato to Meloidogyne incognita, as assessed by restriction in nematode reproduction and development. The effect of T. harzianum treatments on plant defense was detected by monitoring the expression of the genes PR-1/PR-5 and JERF3/ACO, markers of the SA- and JA/ET-dependent signaling pathways, respectively. The compatible nematode-plant interaction in absence of fungi caused a marked suppression of PR-1, PR-5, and ACO gene expressions, either locally or systemically, whilst expression of JERF3 gene resulted unaffected. Conversely, when plants were pre-treated with Th-strains, over-expression of PR-1, PR-5, and ACO genes was observed in roots 5 days after nematode inoculation. JERF3 gene expression did not change in Th-colonized plants challenged with nematodes. In the absence of nematodes, Trichoderma-root interaction was characterized by the inhibition of both SA-dependent signaling pathway and ET biosynthesis, and, in the case of PR-1 and ACO genes, this inhibition was systemic. JERF3 gene expression was systemically restricted only at the very early stages of plant-fungi interaction. Data presented indicate that Th-colonization primed roots for Systemic Acquired Resistance (SAR) against root-knot nematodes and reacted to nematode infection more efficiently than untreated plants. Such a response probably involves also activation of ET production, through an augmented transcription of the ACO gene, which encodes for the enzyme catalyzing the last step of ET biosynthesis. JA signaling and Induced Systemic Resistance (ISR) do not seem to be involved in the biocontrol action of the tested Th-strains against RKNs. Topics: Cyclopentanes; Ethylenes; Oxylipins; Plant Proteins; Plant Roots; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Trichoderma | 2017 |
Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding.
Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log Topics: Animals; Cicer; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Regulatory Networks; Genes, Plant; Gibberellins; Herbivory; Indoleacetic Acids; Moths; Oxylipins; Plant Growth Regulators; Plant Leaves; Reproducibility of Results; RNA, Messenger; Saliva; Sequence Analysis, RNA; Transcriptome; Up-Regulation | 2017 |
Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.
Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds.. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs.. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. Topics: Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Glycine max; Herbivory; Heteroptera; Mitogen-Activated Protein Kinases; Oxylipins; Salicylic Acid; Seeds | 2016 |
Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.
Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. Topics: Chromatography, Thin Layer; Cyclopentanes; Ethylenes; Glycosides; Oxylipins; Ranunculaceae; Rhizome; Salicylic Acid; Saponins; Triterpenes | 2016 |
Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis.
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA. Topics: Alleles; Arabidopsis; Biosynthetic Pathways; Chloroplasts; Cyclopentanes; Ethylenes; Galactolipids; Gene Expression Regulation, Plant; Genes, Plant; Indoleacetic Acids; Inflorescence; Lignin; Membrane Lipids; Mutation; Oxylipins; Phenotype; Phloem; Photosynthesis; Signal Transduction; Up-Regulation | 2016 |
Comparative transcriptional profiling of orange fruit in response to the biocontrol yeast Kloeckera apiculata and its active compounds.
The yeast Kloeckera apiculata strain 34-9 is an antagonist that shows biological control activity against the postharvest fungal pathogens of citrus. An antifungal compound, 2-phenylethanol (PEA), has been identified from the extract of K. apiculata. To better understand the molecular processes underlying the response of citrus fruit tissue to K. apiculata, the extract and PEA, microarray analyses were performed on navel oranges using an Affymetrix Citrus GeneChip.. As many as 801, 339 and 608 differentially expressed genes (DEGs) were identified after the application of K. apiculata, the extract and PEA, respectively. In general, K. apiculata induced the expression of defence-related genes. In addition to chitinase and β-1,3-glucanase, genes involved in ethylene (ET), jasmonic acid (JA), calcium signalling, MAPK signalling and phenylalanine metabolism were induced. In contrast, monodehydroascorbate reductase, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and carotenoid biosynthesis genes were down-regulated. The expression profiles for the extract- and PEA-treated samples were similar to that found for yeast (sharing 57.4 % DEGs), with a significant increase in the transcript levels of defence-related genes.. This study provides a global picture of the gene expression changes in navel oranges after the application of the antagonist yeast K. apiculata, its extract and PEA. The interpretation of the DEGs revealed new insight into the molecular processes that regulate the defence responses in orange tissue. Topics: Calcium Signaling; Citrus sinensis; Cyclopentanes; Ethylenes; Fruit; Gene Expression Profiling; Gene Expression Regulation, Plant; Kloeckera; Mitogen-Activated Protein Kinase Kinases; Oxylipins; Phenylalanine; Phenylethyl Alcohol | 2016 |
Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most devastating diseases in many important crops including Brassica napus worldwide. Quantitative resistance is the only source for genetic improvement of Sclerotinia-resistance in B. napus, but the molecular basis for such a resistance is largely unknown. Here, we performed dynamic transcriptomic analyses to understand the differential defense response to S. sclerotiorum in a resistant line (R-line) and a susceptible line (S-line) of B. napus at 24, 48 and 96 h post-inoculation. Both the numbers of and fold changes in differentially expressed genes in the R-line were larger than those in the S-line. We identified 9001 relative differentially expressed genes in the R-line compared with the S-line. The differences between susceptibility and resistance were associated with the magnitude of expression changes in a set of genes involved in pathogen recognition, MAPK signaling cascade, WRKY transcription regulation, jasmonic acid/ethylene signaling pathways, and biosynthesis of defense-related protein and indolic glucosinolate. The results were supported by quantitation of defense-related enzyme activity and glucosinolate contents. Our results provide insights into the complex molecular mechanism of the defense response to S. sclerotiorum in B. napus and for development of effective strategies in Sclerotinia-resistance breeding. Topics: Ascomycota; Brassica napus; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Ontology; Gene Regulatory Networks; Glucosinolates; MAP Kinase Signaling System; Molecular Sequence Annotation; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Plant Stems; Plants, Genetically Modified; Transcriptome | 2016 |
Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara.
In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants. Topics: Abscisic Acid; Animals; Cyclopentanes; Droughts; Ethylenes; Floods; Herbivory; Insecta; Oxylipins; Plant Growth Regulators; Solanum; Stress, Physiological | 2016 |
De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).
Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively.. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants.. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR. Topics: Arecaceae; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Oxylipins; Reactive Oxygen Species; Salicylates; Trichoderma | 2016 |
The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype.
The crucial role of microRNAs in plant development is exceedingly well supported; their importance in environmental robustness is studied in less detail. Here, we describe a novel, environmentally dependent phenotype in hypomorphic argonaute1 (ago1) mutants and uncover its mechanistic underpinnings in Arabidopsis (Arabidopsis thaliana). AGO1 is a key player in microRNA-mediated gene regulation. We observed transparent lesions on embryonic leaves of ago1 mutant seedlings. These lesions increased in frequency in full-spectrum light. Notably, the lesion phenotype was most environmentally responsive in ago1-27 mutants. This allele is thought to primarily affect translational repression, which has been linked with the response to environmental perturbation. Using several lines of evidence, we found that these lesions represent dead and dying tissues due to an aberrant hypersensitive response. Although all three canonical defense hormone pathways (salicylic acid, jasmonate, and jasmonate/ethylene pathways) were up-regulated in ago1 mutants, we demonstrate that jasmonate perception drives the lesion phenotype. Double mutants of ago1 and coronatine insensitive1, the jasmonate receptor, showed greatly decreased frequency of affected seedlings. The chaperone HEAT SHOCK PROTEIN 90 (HSP90), which maintains phenotypic robustness in the face of environmental perturbations, is known to facilitate AGO1 function. HSP90 perturbation has been shown previously to up-regulate jasmonate signaling and to increase plant resistance to herbivory. Although single HSP90 mutants showed subtly elevated levels of lesions, double mutant analysis disagreed with a simple epistatic model for HSP90 and AGO1 interaction; rather, both appeared to act nonadditively in producing lesions. In summary, our study identifies AGO1 as a major, largely HSP90-independent, factor in providing environmental robustness to plants. Topics: Arabidopsis; Arabidopsis Proteins; Argonaute Proteins; Cotyledon; Cyclopentanes; Environment; Epistasis, Genetic; Ethylenes; Genes, Plant; Genetic Markers; HSP90 Heat-Shock Proteins; Light; Mutation; Oxylipins; Phenotype; Salicylic Acid; Seedlings; Signal Transduction; Staining and Labeling; Stochastic Processes | 2016 |
Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.).
Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat. Topics: Ascomycota; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Inbreeding; Molecular Sequence Annotation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Salicylic Acid; Signal Transduction; Triticum | 2016 |
Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon.
Brachypodium distachyon is a promising model plants for grasses. Infections of Brachypodium by various pathogens that severely impair crop production have been reported, and the species accordingly provides an alternative platform for investigating molecular mechanisms of pathogen virulence and plant disease resistance. To date, we have a broad picture of plant immunity only in Arabidopsis and rice; therefore, Brachypodium may constitute a counterpart that displays the commonality and uniqueness of defence systems among plant species. Phytohormones play key roles in plant biotic stress responses, and hormone-responsive genes are used to qualitatively and quantitatively evaluate disease resistance responses during pathogen infection. For these purposes, defence-related phytohormone marker genes expressed at time points suitable for defence-response monitoring are needed. Information about their expression profiles over time as well as their response specificity is also helpful. However, useful marker genes are still rare in Brachypodium.. We selected 34 candidates for Brachypodium marker genes on the basis of protein-sequence similarity to known marker genes used in Arabidopsis and rice. Brachypodium plants were treated with the defence-related phytohormones salicylic acid, jasmonic acid and ethylene, and their transcription levels were measured 24 and 48 h after treatment. Two genes for salicylic acid, 7 for jasmonic acid and 2 for ethylene were significantly induced at either or both time points. We then focused on 11 genes encoding pathogenesis-related (PR) 1 protein and compared their expression patterns with those of Arabidopsis and rice. Phylogenetic analysis suggested that Brachypodium contains several PR1-family genes similar to rice genes. Our expression profiling revealed that regulation patterns of some PR1 genes as well as of markers identified for defence-related phytohormones are closely related to those in rice.. We propose that the Brachypodium immune hormone marker genes identified in this study will be useful to plant pathologists who use Brachypodium as a model pathosystem, because the timing of their transcriptional activation matches that of the disease resistance response. Our results using Brachypodium also suggest that monocots share a characteristic immune system, defined as the common defence system, that is different from that of dicots. Topics: Brachypodium; Cyclopentanes; Ethylenes; Gene Expression Profiling; Genes, Plant; Genetic Markers; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Salicylic Acid | 2016 |
MOL1 is required for cambium homeostasis in Arabidopsis.
Plants maintain pools of pluripotent stem cells which allow them to constantly produce new tissues and organs. Stem cell homeostasis in shoot and root tips depends on negative regulation by ligand-receptor pairs of the CLE peptide and leucine-rich repeat receptor-like kinase (LRR-RLK) families. However, regulation of the cambium, the stem cell niche required for lateral growth of shoots and roots, is poorly characterized. Here we show that the LRR-RLK MOL1 is necessary for cambium homeostasis in Arabidopsis thaliana. By employing promoter reporter lines, we reveal that MOL1 is active in a domain that is distinct from the domain of the positively acting CLE41/PXY signaling module. In particular, we show that MOL1 acts in an opposing manner to the CLE41/PXY module and that changing the domain or level of MOL1 expression both result in disturbed cambium organization. Underlining discrete roles of MOL1 and PXY, both LRR-RLKs are not able to replace each other when their expression domains are interchanged. Furthermore, MOL1 but not PXY is able to rescue CLV1 deficiency in the shoot apical meristem. By identifying genes mis-expressed in mol1 mutants, we demonstrate that MOL1 represses genes associated with stress-related ethylene and jasmonic acid hormone signaling pathways which have known roles in coordinating lateral growth of the Arabidopsis stem. Our findings provide evidence that common regulatory mechanisms in different plant stem cell niches are adapted to specific niche anatomies and emphasize the importance of a complex spatial organization of intercellular signaling cascades for a strictly bidirectional tissue production. Topics: Arabidopsis; Arabidopsis Proteins; Cambium; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Meristem; Mutation; Oxylipins; Plant Growth Regulators; Protein Kinases; Signal Transduction | 2016 |
Comparison of nicotinamide adenine dinucleotide phosphate-induced immune responses against biotrophic and necrotrophic pathogens in Arabidopsis thaliana.
The pyridine nucleotide nicotinamide adenine dinucleotide phosphate (NADP) is a universal coenzyme in anabolic reactions and also functions in intracellular signaling by serving as a substrate for production of the Ca(2+)-mobilizing agent nicotinic acid adenine dinucleotide phosphate (NAADP). It has recently been shown that, in mammalian cells, cellular NADP can be released into the extracellular compartment (ECC) upon environmental stresses by active exocytosis or diffusion through transmembrane transporters in living cells or passive leakage across the membrane in dying cells. In the ECC, NADP can either serve as a substrate for production of NAADP or act directly on purinoceptors to activate transmembrane signaling. In the last several years, extracellular NADP has also been suggested to function in plant immune responses. Here, we compared exogenous NADP-induced immune responses against biotrophic and necrotrophic pathogens in the Arabidopsis thaliana ecotype Columbia and found that NADP addition induces salicylic acid-mediated defense signaling but not jasmonic acid/ethylene-mediated defense responses. These results suggest the specificity of exogenous NADP-activated signaling in plants. Topics: Arabidopsis; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; NADP; Oxylipins; Plant Immunity; Plant Leaves; Salicylic Acid; Signal Transduction | 2016 |
Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato.
Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway. Transactivation and DNA-protein binding assays demonstrate that JRE4 activates the transcription of SGA biosynthetic genes by binding to GCC box-like elements in their promoters. These JRE-binding elements occur at significantly higher frequencies in proximal promoter regions of the genes regulated by JRE genes, supporting the conclusion that JREs mediate transcriptional co-ordination of a series of metabolic genes involved in SGA biosynthesis. Topics: Alkaloids; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Phytosterols; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Promoter Regions, Genetic; Solanum lycopersicum; Species Specificity; Transcription Factors; Transcriptional Activation | 2016 |
Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids.
As an important industrial material, natural rubber is mainly harvested from the rubber tree. Rubber tree breeding is inefficient, expensive and time-consuming, whereas marker-assisted selection is a feasible method for early selection of high-yield hybrids. We thus sequenced and analyzed the transcriptomes of two parent rubber trees (RRIM 600 and PR 107) and their most productive hybrids (RY 7-33-97 and RY 7-20-59) to understand their gene expression patterns and genetic variations including single nucleotide polymorphisms (SNPs) and small insertions/deletions (InDels). We discovered >31,000 genetic variations in 112,702 assembled unigenes. Our results showed that the higher yield in F1 hybrids was positively associated with their higher genome heterozygosity, which was further confirmed by genotyping 10 SNPs in 20 other varieties. We also showed that RY 7-33-97 and RY 7-20-59 were genetically closer to RRIM 600 and PR 107, respectively, in agreement with both their phenotypic similarities and gene expression profiles. After identifying ethylene- and jasmonic acid-responsive genes at the transcription level, we compared and analyzed the genetic variations underlying rubber biosynthesis and the jasmonic acid and ethylene pathways in detail. Our results suggest that genome-wide genetic variations play a substantive role in maintaining rubber tree heterosis. Topics: Cyclopentanes; Ethylenes; Gene Expression; Genes, Plant; Genome, Plant; Genotype; Hevea; Hybrid Vigor; INDEL Mutation; Latex; Oxylipins; Polymorphism, Single Nucleotide; Transcriptome | 2016 |
Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea.
Pseudomonas fluorescens induces gibberellin and ethylene signaling via hydrogen peroxide in planta . Ethylene activates abscisic acid signaling. Hormones increase sesquiterpenoid biosynthesis gene expression and enzyme activity, inducing essential oil accumulation. Atractylodes lancea is a famous Chinese medicinal plant, whose main active components are essential oils. Wild A. lancea has become endangered due to habitat destruction and over-exploitation. Although cultivation can ensure production of the medicinal material, the essential oil content in cultivated A. lancea is significantly lower than that in the wild herb. The application of microbes as elicitors has become an effective strategy to increase essential oil accumulation in cultivated A. lancea. Our previous study identified an endophytic bacterium, Pseudomonas fluorescens ALEB7B, which can increase essential oil accumulation in A. lancea more efficiently than other endophytes; however, the underlying mechanisms remain unknown (Physiol Plantarum 153:30-42, 2015; Appl Environ Microb 82:1577-1585, 2016). This study demonstrates that P. fluorescens ALEB7B firstly induces hydrogen peroxide (H2O2) signaling in A. lancea, which then simultaneously activates gibberellin (GA) and ethylene (ET) signaling. Subsequently, ET activates abscisic acid (ABA) signaling. GA and ABA signaling increase expression of HMGR and DXR, which encode key enzymes involved in sesquiterpenoid biosynthesis, leading to increased levels of the corresponding enzymes and then an accumulation of essential oils. Specific reactive oxygen species and hormone signaling cascades induced by P. fluorescens ALEB7B may contribute to high-efficiency essential oil accumulation in A. lancea. Illustrating the regulation mechanisms underlying P. fluorescens ALEB7B-induced essential oil accumulation not only provides the theoretical basis for the inducible synthesis of terpenoids in many medicinal plants, but also further reveals the complex and diverse interactions among different plants and their endophytes. Topics: Abscisic Acid; Atractylodes; Biomass; Brassinosteroids; Cyclopentanes; Endophytes; Ethylenes; Gibberellins; Hydrogen Peroxide; Nitric Oxide; Oils, Volatile; Oxylipins; Plant Growth Regulators; Pseudomonas fluorescens; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Terpenes | 2016 |
Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray.
Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants. Topics: Colletotrichum; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Ontology; Genes, Plant; Manihot; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Real-Time Polymerase Chain Reaction; Reproducibility of Results; Salicylic Acid; Signal Transduction; Up-Regulation | 2016 |
A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
The necrotrophic phytopathogen, Sclerotinia sclerotiorum, causes Sclerotinia stem rot, which is a serious constraint to canola (Brassica napus L.) production worldwide. To understand the detailed molecular mechanisms underlying host response to Sclerotinia infection, we analyzed the transcript level changes in canola post-infection with S. sclerotiorum in a time course of a compatible interaction using strand specific whole transcriptome sequencing. Following infection, 161 and 52 genes (P≤0.001) were induced while 24 and 23 genes were repressed at 24h post-inoculation (hpi) and 48hpi, respectively. This suggests that, a gradual increase in host cell lyses and increase virulence of the pathogen led to the expression of only a fewer host specific genes at the later stage of infection. We observed rapid induction of key pathogen responsive genes, including glucanases, chitinases, peroxidases and WRKY Transcription factors (TFs) within 24hpi, indicating early detection of the pathogen by the host. Only 16 genes were significantly induced at both the time points suggesting a coordinated suppression of host responses by the pathogen. In addition to genes involved in plant-pathogen interactions, many novel disease responsive genes, including various TF sand those associated with jasmonate (JA) and ethylene (ET) signalling were identified. This suggests that canola adopts multiple strategies in mediating plant responses to the pathogen attack. Quantitative real time PCR (qRT-PCR) validation of a selected set of genes demonstrated a similar trend as observed by RNA-Seq analysis and highlighted the potential involvement of these genes by the host to defend itself from pathogen attack. Overall, this work presents an in-depth analysis of the interaction between host susceptibility and pathogen virulence in the agriculturally important B. napus-S. sclerotiorum pathosystem. Topics: Ascomycota; Brassica napus; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Ontology; Host-Pathogen Interactions; Molecular Sequence Annotation; Oxylipins; Plant Diseases; Plant Immunity; Plant Leaves; Plant Proteins; Sequence Analysis, RNA; Signal Transduction; Transcription Factors; Transcriptome | 2016 |
Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea.
ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Defensins; Disease Resistance; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Pectins; Plant Diseases; Plant Immunity; Pseudomonas syringae; Salicylic Acid; Transcription Factors | 2016 |
GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.
The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. Topics: Cyclopentanes; Cytochrome P-450 Enzyme System; Disease Resistance; Droughts; Ethylenes; Gene Expression Regulation, Plant; Glycine max; Oxylipins; Phytophthora; Plant Diseases; Signal Transduction; Stress, Physiological | 2016 |
Alternative splicing of basic chitinase gene PR3b in the low-nicotine mutants of Nicotiana tabacum L. cv. Burley 21.
Two unlinked semi-dominant loci, A (NIC1) and B (NIC2), control nicotine and related alkaloid biosynthesis in Burley tobaccos. Mutations in either or both loci (nic1 and nic2) lead to low nicotine phenotypes with altered environmental stress responses. Here we show that the transcripts derived from the pathogenesis-related (PR) protein gene PR3b are alternatively spliced to a greater extent in the nic1 and nic2 mutants of Burley 21 tobacco and the nic1nic2 double mutant. The alternative splicing results in a deletion of 65 nucleotides and introduces a premature stop codon into the coding region of PR3b that leads to a significant reduction of PR3b specific chitinase activity. Assays of PR3b splicing in F Topics: Alternative Splicing; Chitinases; Cyclopentanes; Ethylenes; Genes, Plant; Mutation; Nicotiana; Nicotine; Oxylipins; Plant Growth Regulators; Signal Transduction | 2016 |
Stress-induced expression of NICOTINE2-locus genes and their homologs encoding Ethylene Response Factor transcription factors in tobacco.
Plants have evolved diverse defense metabolites as adaptations to biotic and abiotic stresses. The defense alkaloid nicotine is produced in Nicotiana tabacum (tobacco) and its biosynthesis is elicited by jasmonates in the roots. At least seven jasmonate-responsive genes that encode transcription factors of the Ethylene Response Factor (ERF) family are clustered at the nicotine-regulatory locus NICOTINE2 (NIC2) in the tobacco genome. A subset of the NIC2-locus ERFs and their homologs, including ERF189 and ERF199, have been shown to be most effective in controlling nicotine biosynthetic pathway genes. Herein reported is that the ERF genes of this group, other than ERF189 and ERF199, were strongly induced by NaCl in tobacco hairy roots, although salt stress had no effect on expression of nicotine biosynthesis genes. Abscisic acid and osmotic stress also increased expression of a subset of these NaCl-inducible ERF genes. Promoter expression analysis in transgenic tobacco hairy roots confirmed that while methyl jasmonate (MJ) activated the promoters of ERF29, ERF210 and ERF199, salt stress up-regulated the promoters of only ERF29 and ERF210, but not ERF199. The protein biosynthesis inhibitor cycloheximide induced expression of the ERFs, and simultaneous addition of MJ and cycloheximide showed synergistic effects. These results indicate that, after several gene duplication events, the NIC2-locus ERFs and possibly their homologs appear to have diverged in their responses to jasmonates and various environmental inputs, including salt stress, and may have evolved to regulate distinct metabolic processes and cellular responses. Topics: Abscisic Acid; Acetates; Cyclopentanes; Ethylenes; Nicotiana; Nicotine; Oxylipins; Plant Proteins; Plant Roots; Sodium Chloride; Transcription Factors | 2015 |
The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling.
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. Topics: Animals; Antibiosis; Aphids; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Host-Parasite Interactions; Models, Biological; Oxylipins; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Solanum tuberosum | 2015 |
ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway.
The ERF022 gene was found to affect embryogenic transition in somatic cells in Arabidopsis via the ethylene-related pathway. The study provides evidence that ERF022 - LEC2 interaction is involved in the auxin-ethylene crosstalk that operates in somatic embryogenesis induction. The ERF022 gene of the ERF family was previously identified among the transcription factor genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong inhibition of the gene was found to be associated with the induction of somatic embryogenesis (SE) and an erf022 mutant was indicated to display a substantially impaired capacity for SE. Therefore, the molecular function of ERF022 in the induction of SE was studied in the present work. A phenotype of an erf022 mutant was indicated as being related to an increased content of ethylene. The results further suggest that the ERF022 controls the genes that are involved in both the biosynthesis (ACS7) and signalling (ERF1, ETR1) of ethylene and indicate that the ERF022 is a new regulatory element in ethylene-related responses that negatively control the ethylene content and perception. It is proposed that the negative impact of ethylene on the induction of SE may result from a modulation of the auxin-related genes that control the embryogenic transition in somatic cells. Among them, the LEC2, which is a key regulator of the induction of SE through the stimulation of auxin synthesis, was possibly related to ERF022. The results of the study provide new hormone-related clues to define the genetic network that governs SE. A putative model of the regulatory pathway is proposed that is involved in the induction of SE in which the auxin-ethylene interactions are controlled by ERF022 and LEC2 and their targets. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Gene Regulatory Networks; Indoleacetic Acids; Models, Biological; Oxylipins; Plant Shoots; Plant Somatic Embryogenesis Techniques; Seedlings; Seeds; Transcription Factors | 2015 |
Control of resin production in Araucaria angustifolia, an ancient South American conifer.
Araucaria angustifolia is an ancient slow-growing conifer that characterises parts of the Southern Atlantic Forest biome, currently listed as a critically endangered species. The species also produces bark resin, although the factors controlling its resinosis are largely unknown. To better understand this defence-related process, we examined the resin exudation response of A. angustifolia upon treatment with well-known chemical stimulators used in fast-growing conifers producing both bark and wood resin, such as Pinus elliottii. The initial hypothesis was that A. angustifolia would display significant differences in the regulation of resinosis. The effect of Ethrel(®) (ET - ethylene precursor), salicylic acid (SA), jasmonic acid (JA), sulphuric acid (SuA) and sodium nitroprusside (SNP - nitric oxide donor) on resin yield and composition in young plants of A. angustifolia was examined. In at least one of the concentrations tested, and frequently in more than one, an aqueous glycerol solution applied on fresh wound sites of the stem with one or more of the adjuvants examined promoted an increase in resin yield, as well as monoterpene concentration (α-pinene, β-pinene, camphene and limonene). Higher yields and longer exudation periods were observed with JA and ET, another feature shared with Pinus resinosis. The results suggest that resinosis control is similar in Araucaria and Pinus. In addition, A. angustifolia resin may be a relevant source of valuable terpene chemicals, whose production may be increased by using stimulating pastes containing the identified adjuvants. Topics: Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexenes; Cyclopentanes; Ethylenes; Limonene; Monoterpenes; Oxylipins; Pinus; Plant Growth Regulators; Plant Stems; Resins, Plant; Terpenes; Tracheophyta | 2015 |
Insights into the origin and evolution of the plant hormone signaling machinery.
Plant hormones modulate plant growth, development, and defense. However, many aspects of the origin and evolution of plant hormone signaling pathways remain obscure. Here, we use a comparative genomic and phylogenetic approach to investigate the origin and evolution of nine major plant hormone (abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonate, salicylic acid, and strigolactone) signaling pathways. Our multispecies genome-wide analysis reveals that: (1) auxin, cytokinin, and strigolactone signaling pathways originated in charophyte lineages; (2) abscisic acid, jasmonate, and salicylic acid signaling pathways arose in the last common ancestor of land plants; (3) gibberellin signaling evolved after the divergence of bryophytes from land plants; (4) the canonical brassinosteroid signaling originated before the emergence of angiosperms but likely after the split of gymnosperms and angiosperms; and (5) the origin of the canonical ethylene signaling pathway postdates shortly the emergence of angiosperms. Our findings might have important implications in understanding the molecular mechanisms underlying the emergence of land plants. Topics: Abscisic Acid; Brassinosteroids; Bryophyta; Cyclopentanes; Cytokinins; Ethylenes; Evolution, Molecular; Gibberellins; Indoleacetic Acids; Lactones; Magnoliopsida; Oxylipins; Phylogeny; Plant Growth Regulators; Sequence Homology, Amino Acid; Signal Transduction; Species Specificity | 2015 |
Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.
Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. Topics: Arabidopsis; Arabidopsis Proteins; Brassica; Cell Wall; Chitinases; Colletotrichum; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Yeasts | 2015 |
Ethylene Signaling Modulates Herbivore-Induced Defense Responses in the Model Legume Medicago truncatula.
One or more effectors in the labial saliva (LS) of generalist Noctuid caterpillars activate plant signaling pathways to modulate jasmonate (JA)-dependent defense responses; however, the exact mechanisms involved have yet to be elucidated. A potential candidate in this phytohormone interplay is the ethylene (ET) signaling pathway. We compared the biochemical and molecular responses of the model legume Medicago truncatula and the ET-insensitive skl mutant to herbivory by fourth instar Spodoptera exigua (Hübner) caterpillars with intact or impaired LS secretions. Cellular oxidative stress increases rapidly after herbivory, as evidenced by changes in oxidized-to-reduced ascorbate (ASC) and glutathione (GSH) ratios. The caterpillar-specific increase in GSH ratios and the LS-specific increase in ASC ratios are alleviated in the skl mutant, indicating that ET signaling is required. Ten hours postherbivory, markers of the JA and JA/ET pathways are differentially expressed; MtVSP is induced and MtHEL is repressed in a caterpillar LS- and ET-independent manner. In contrast, expression of the classic marker of the systemic acquired resistance pathway, MtPR1, is caterpillar LS-dependent and requires ET signaling. Caterpillar LS further suppresses the induction of JA-related trypsin inhibitor activity in an ET-dependent manner. Findings suggest that ET is involved in the caterpillar LS-dependent, salicylic acid/NPR1-mediated attenuation of JA-dependent induced responses. Topics: Animals; Biomarkers; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Larva; Medicago truncatula; Models, Biological; Mutation; Oxidative Stress; Oxylipins; Plant Growth Regulators; Salicylic Acid; Saliva; Signal Transduction; Spodoptera | 2015 |
Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis.
The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 'full-size', 21 'half-size' and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis. Topics: ATP-Binding Cassette Transporters; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Hevea; Latex; Molecular Sequence Data; Multigene Family; Oxylipins; Phylogeny; Plant Proteins; Sequence Analysis, RNA | 2015 |
Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants.
Cotyledon wounding in pepper caused the early generation of hydrogen peroxide both locally (cotyledons) and systemically (upper true leaves). However, 72 h later there is a different wound response between local and systemic organs, as shown by resistance to the pathogenic fungus Botrytis cinerea, that increased locally and decreased systemically. Signaling by ethylene and jasmonic acid was assessed by using two inhibitors: 1-methylcyclopropene (MCP, inhibitor of ethylene receptors) and ibuprofen (inhibitor of jasmonate biosynthesis). MCP did not affect the modulation of resistance levels to Botrytis by wounding, ruling out the involvement of ethylene signaling. Ibuprofen did not inhibit wound-induced resistance at the local level, but inhibited wound-induced systemic susceptibility. Moreover, changes of biochemical and structural defenses in response to wounding were studied. Peroxidase activity and the expression of a peroxidase gene (CAPO1) increased locally as a response to wounding, but no changes were observed systemically. Lignin deposition was induced in wounded cotyledons, but was repressed in systemic leaves of wounded plants, whereas soluble phenolics did not change locally and decreased systemically. The expression of two other genes involved in plant defense (CABPR1 and CASC1) was also differentially regulated locally and systemically, pointing to a generalized increase in plant defenses at the local level and a systemic decrease as a response to wounding. Wound-induced defenses at the local level coincided with resistance to the necrotroph fungus B. cinerea, whereas depleted defenses in systemic leaves of wounded plants correlated to induced susceptibility against this pathogen. It may be that the local response acts as a sink of energy resources to mount a defense against pathogens, whereas in systemic organs the resources for defense are lower. Topics: Botrytis; Capsicum; Chitinases; Cotyledon; Cyclopentanes; Cyclopropanes; Disease Resistance; Disease Susceptibility; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Ibuprofen; Lignin; Oxylipins; Peroxidase; Phenols; Plant Diseases; Solubility | 2015 |
Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response.
Plants subjected to wounding stress produce secondary metabolites. Several of these metabolites prevent chronic diseases and can be used as colorants, flavors, and as antimicrobials. This wound-induced production of plant secondary metabolites is mediated by signaling-molecules such as reactive oxygen species (ROS), ethylene (ET) and jasmonic acid (JA). However, their specific role and interactions that modulate the wound-respond in plants is not fully understood. In the present study, a subtractive cDNA library was generated, to better understand the global response of plants to wounding stress. Carrot (Daucus carota) was used as a model system for this study. A total of 335 unique expressed sequence tags (ESTs) sequences were obtained. ESTs sequences with a putative identity showed involvement in stress-signaling pathways as well as on the primary and secondary metabolism. Inhibitors of ROS biosynthesis, ET action, and JA biosynthesis alone and in combination were applied to wounded-carrots in order to determine, based on relative gene expression data, the regulatory role of ET, JA, and ROS on the wound-response in plants. Our results demonstrate that ROS play a key role as signaling-molecules for the wound-induced activation of the primary and secondary metabolism whereas ET and JA are essential to modulate ROS levels. Topics: Basal Metabolism; Cyclopentanes; Daucus carota; Ethylenes; Gene Expression Regulation, Plant; Gene Library; Models, Biological; Oxylipins; Phenols; Plants; Reactive Oxygen Species; Secondary Metabolism; Signal Transduction; Stress, Physiological; Wounds and Injuries | 2015 |
Screening of rice (Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight.
PR genes, a type of genetic marker, are constitutively expressed at background levels, while being easily inducible by pathogenic bacteria. By using a yeast two-hybrid technique, four rice (Oryza sativa L.) OsPR1b-interacting factors were screened. Homozygous plants overexpressing OsPR1b were prepared by transgenic technology. We postulated that OsPR1b may participate in the resistance signaling pathway of rice. Of simultaneous treatments with hormones and pathogenic bacteria, exogenously applying JA and ET significantly increased the expression level of OsPR1b genes in seedlings. Compared with the control group that was inoculated with water, inoculation with a mixture of water and pathogenic bacteria hardly affected the expression level of OsPR1b gene, while cotreatment with SA and pathogenic bacteria slightly upregulated the expression level. However, cotreatment with JA or ET and pathogenic bacteria managed to significantly upregulate the expression level of the OsPR1b gene by 4.8 or 5.7 fold. PR genes, which are sensitive, are prone to many unknown factors during expression, and the detailed regulatory mechanisms in rice still require in-depth studies. Topics: Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Oryza; Oxylipins; Plant Breeding; Plant Diseases; Plant Proteins; Seedlings; Two-Hybrid System Techniques; Up-Regulation; Xanthomonas | 2015 |
CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper.
High temperature (HT), high humidity (HH), and pathogen infection often co-occur and negatively affect plant growth. However, these stress factors and plant responses are generally studied in isolation. The mechanisms of synergistic responses to combined stresses are poorly understood. We isolated the subgroup IIb WRKY family member CaWRKY6 from Capsicum annuum and performed quantitative real-time PCR analysis. CaWRKY6 expression was upregulated by individual or simultaneous treatment with HT, HH, combined HT and HH (HTHH), and Ralstonia solanacearum inoculation, and responded to exogenous application of jasmonic acid (JA), ethephon, and abscisic acid (ABA). Virus-induced gene silencing of CaWRKY6 enhanced pepper plant susceptibility to R. solanacearum and HTHH, and downregulated the hypersensitive response (HR), JA-, ethylene (ET)-, and ABA-induced marker gene expression, and thermotolerance-associated expression of CaHSP24, ER-small CaSHP, and Chl-small CaHSP. CaWRKY6 overexpression in pepper attenuated the HTHH-induced suppression of resistance to R. solanacearum infection. CaWRKY6 bound to and activated the CaWRKY40 promoter in planta, which is a pepper WRKY that regulates heat-stress tolerance and R. solanacearum resistance. CaWRKY40 silencing significantly blocked HR-induced cell death and reduced transcriptional expression of CaWRKY40. These data suggest that CaWRKY6 is a positive regulator of R. solanacearum resistance and heat-stress tolerance, which occurs in part by activating CaWRKY40. Topics: Abscisic Acid; Base Sequence; Capsicum; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Hot Temperature; Humidity; Molecular Sequence Data; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Ralstonia solanacearum; Sequence Analysis, DNA; Stress, Physiological; Transcription Factors | 2015 |
Dissection of jasmonate functions in tomato stamen development by transcriptome and metabolome analyses.
Jasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1.. Wild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release.. Our data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development. Topics: Amino Acids, Cyclic; Cyclopentanes; Ethylenes; Flowers; Gene Expression Profiling; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Genes, Plant; Isoleucine; Metabolome; Metabolomics; Models, Biological; Mutation; Oxylipins; Pollen; RNA, Messenger; Solanum lycopersicum; Solubility; Transcriptome | 2015 |
The WRKY45-Dependent Signaling Pathway Is Required For Resistance against Striga hermonthica Parasitism.
The root hemiparasite witchweed (Striga spp.) is a devastating agricultural pest that causes losses of up to $1 billion US annually in sub-Saharan Africa. Development of resistant crops is one of the cost-effective ways to address this problem. However, the molecular mechanisms underlying resistance are not well understood. To understand molecular events upon Striga spp. infection, we conducted genome-scale RNA sequencing expression analysis using Striga hermonthica-infected rice (Oryza sativa) roots. We found that transcripts grouped under the Gene Ontology term defense response were significantly enriched in up-regulated differentially expressed genes. In particular, we found that both jasmonic acid (JA) and salicylic acid (SA) pathways were induced, but the induction of the JA pathway preceded that of the SA pathway. Foliar application of JA resulted in higher resistance. The hebiba mutant plants, which lack the JA biosynthesis gene allene oxide cyclase, exhibited severe S. hermonthica susceptibility. The resistant phenotype was recovered by application of JA. By contrast, the SA-deficient NahG rice plants were resistant against S. hermonthica, indicating that endogenous SA is not required for resistance. However, knocking down WRKY45, a regulator of the SA/benzothiadiazole pathway, resulted in enhanced susceptibility. Interestingly, NahG plants induced the JA pathway, which was down-regulated in WRKY45-knockdown plants, linking the resistant and susceptible phenotypes to the JA pathway. Consistently, the susceptibility phenotype in the WRKY45-knockdown plants was recovered by foliar JA application. These results point to a model in which WRKY45 modulates a cross talk in resistance against S. hermonthica by positively regulating both SA/benzothiadiazole and JA pathways. Topics: Cyclopentanes; Disease Resistance; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Models, Biological; Mutation; Oryza; Oxylipins; Plant Diseases; Plant Proteins; RNA, Messenger; Salicylic Acid; Signal Transduction; Striga; Thiadiazoles | 2015 |
ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.
The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Defensins; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plants, Genetically Modified; Promoter Regions, Genetic; Recombinant Proteins; Seedlings; Transcription Factors | 2015 |
Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector.
Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations. Topics: Animals; Aphids; Arabidopsis; Brassica napus; Cyclopentanes; Ethylenes; Host-Parasite Interactions; Insect Vectors; Oxylipins; Plant Diseases; Plant Growth Regulators; Potyvirus; Salicylic Acid; Signal Transduction | 2015 |
Targeting Hormone-Related Pathways to Improve Grain Yield in Rice: A Chemical Approach.
Sink/source relationships, regulating the mobilization of stored carbohydrates from the vegetative tissues to the grains, are of key importance for grain filling and grain yield. We used different inhibitors of plant hormone action to assess their effects on grain yield and on the expression of hormone-associated genes. Among the tested chemicals, 2-indol-3-yl-4-oxo-4-phenylbutanoic acid (PEO-IAA; antagonist of auxin receptor), nordihydroguaiaretic acid (NDGA; abscisic acid (ABA) biosynthesis inhibitor), and 2-aminoisobutyric acid (AIB; ethylene biosynthesis inhibitor) improved grain yield in a concentration dependent manner. These effects were also dependent on the plant developmental stage. NDGA and AIB treatments induced an increase in photosynthesis in flag leaves concomitant to the increments of starch content in flag leaves and grains. NDGA inhibited the expression of ABA-responsive gene, but did not significantly decrease ABA content. Instead, NDGA significantly decreased jasmonic acid and jasmonic acid-isoleucine. Our results support the notion that the specific inhibition of jasmonic acid and ethylene biosynthesis resulted in grain yield increase in rice. Topics: Abscisic Acid; Aminoisobutyric Acids; Crop Production; Cyclopentanes; Dose-Response Relationship, Drug; Ethylenes; Oryza; Oxylipins; Photosynthesis; Plant Growth Regulators; Plant Leaves; Plant Proteins; Receptors, Cell Surface; Starch | 2015 |
The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.
Although Sclerotinia sclerotiorum is a devastating necrotrophic fungal plant pathogen in agriculture, the virulence mechanisms utilized by S. sclerotiorum and the host defense mechanisms against this pathogen have not been fully understood. Here, we report that the Arabidopsis (Arabidopsis thaliana) Mediator complex subunit MED16 is a key component of basal resistance against S. sclerotiorum. Mutants of MED16 are markedly more susceptible to S. sclerotiorum than mutants of 13 other Mediator subunits, and med16 has a much stronger effect on S. sclerotiorum-induced transcriptome changes compared with med8, a mutation not altering susceptibility to S. sclerotiorum. Interestingly, med16 is also more susceptible to S. sclerotiorum than coronatine-insensitive1-1 (coi1-1), which is the most susceptible mutant reported so far. Although the jasmonic acid (JA)/ethylene (ET) defense pathway marker gene PLANT DEFENSIN1.2 (PDF1.2) cannot be induced in either med16 or coi1-1, basal transcript levels of PDF1.2 in med16 are significantly lower than in coi1-1. Furthermore, ET-induced suppression of JA-activated wound responses is compromised in med16, suggesting a role for MED16 in JA-ET cross talk. Additionally, MED16 is required for the recruitment of RNA polymerase II to PDF1.2 and OCTADECANOID-RESPONSIVE ARABIDOPSIS ETHYLENE/ETHYLENE-RESPONSIVE FACTOR59 (ORA59), two target genes of both JA/ET-mediated and the transcription factor WRKY33-activated defense pathways. Finally, MED16 is physically associated with WRKY33 in yeast and in planta, and WRKY33-activated transcription of PDF1.2 and ORA59 as well as resistance to S. sclerotiorum depends on MED16. Taken together, these results indicate that MED16 regulates resistance to S. sclerotiorum by governing both JA/ET-mediated and WRKY33-activated defense signaling in Arabidopsis. Topics: Amino Acids, Cyclic; Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Mediator Complex; Oxylipins; Plant Diseases; Protein Binding; RNA Polymerase II; Signal Transduction; Trans-Activators; Transcription Factors; Transcription, Genetic; Transcriptome | 2015 |
Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid.
Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. Topics: Animals; Aphids; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Inbreeding; Models, Biological; Oxylipins; Phloem; Plant Exudates; Plant Leaves; Plant Proteins; Salicylic Acid; Signal Transduction; Zea mays | 2015 |
Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight.
WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with various plant processes but most notably with plant defense responses to pathogens. Here we demonstrate that expression of rice WRKY4 gene (OsWRKY4) was rapidly and strongly induced upon infection of Rhizoctonia solani, the causing agent of rice sheath blight, and exogenous jasmonic acid (JA) and ethylene (ET). OsWRKY4 is localized to the nucleus of plant cells and possesses transcriptional activation ability. Modulation of OsWRKY4 transcript levels by constitutive overexpression increases resistance to the necrotrophic sheath blight fungus, concomitant with elevated expression of JA- and ET-responsive pathogenesis-related (PR) genes such as PR1a, PR1b, PR5 and PR10/PBZ1. Suppression by RNA interference (RNAi), on the other hand, compromises resistance to the fungal pathogen. Yeast one-hybrid assay and transient expression in tobacco cells reveal that OsWRKY4 specifically binds to the promoter regions of PR1b and PR5 which contain W-box (TTGAC[C/T]), or W-box like (TGAC[C/T]) cis-elements. In conclusion, we propose that OsWRKY4 functions as an important positive regulator that is implicated in the defense responses to rice sheath blight via JA/ET-dependent signal pathway. Topics: Cloning, Molecular; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Nicotiana; Oryza; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Rhizoctonia; Transcription Factors | 2015 |
The Rice E3-Ubiquitin Ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Modulates the Expression of ROOT MEANDER CURLING, a Gene Involved in Root Mechanosensing, through the Interaction with Two ETHYLENE-RESPONSE FACTOR Transcription Factors.
Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Mechanotransduction, Cellular; Oryza; Osmosis; Oxylipins; Plant Growth Regulators; Plant Proteins; Plant Roots; Proteasome Endopeptidase Complex; RNA Interference; Two-Hybrid System Techniques; Ubiquitin-Protein Ligases; Ubiquitins | 2015 |
Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
Histone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2.. We used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR).. The tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea.. VIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways. Topics: Amino Acid Sequence; Botrytis; Cell Wall; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Gene Silencing; Histones; Molecular Sequence Data; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Propanols; Protein Binding; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Ubiquitin-Protein Ligases; Ubiquitination | 2015 |
The novel elicitor AsES triggers a defense response against Botrytis cinerea in Arabidopsis thaliana.
AsES (Acremonium strictum Elicitor and Subtilisin) is a novel extracellular elicitor protein produced by the avirulent isolate SS71 of the opportunist strawberry fungal pathogen A. strictum. Here we describe the activity of AsES in the plant-pathogen system Arabidopsis thaliana-Botrytis cinerea. We show that AsES renders A. thaliana plants resistant to the necrotrophic pathogen B. cinerea, both locally and systemically and the defense response observed is dose-dependent. Systemic, but not local resistance is dependent on the length of exposure to AsES. The germination of the spores in vitro was not inhibited by AsES, implying that protection to B. cinerea is due to the induction of the plant defenses. These results were further supported by the findings that AsES differentially affects mutants impaired in the response to salicylic acid, jasmonic acid and ethylene, suggesting that AsES triggers the defense response through these three signaling pathways. Topics: Acremonium; Arabidopsis; Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Fungal Proteins; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Salicylic Acid; Signal Transduction | 2015 |
Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39.
Gray mold (Botrytis cinerea) is an important disease of tomato (Solanum lycopersicum). This study examined defense-related gene expression involved in the resistance to B. cinerea that is induced in tomato plants by benzothiadiazole and Trichoderma harzianum T39 soil drench. In whole plants, transcriptional changes related to salicylic acid and ethylene were induced by the application of a 0.01% benzothiadiazole solution, whereas changes related to jasmonic acid were induced by the application of a 0.4% T39 suspension. On detached leaves, soil treatment by T39 led to enhanced resistance to B. cinerea infection that was proportional to the concentration of the T39 suspension. By 5 days after pathogen inoculation, the plants that had received the 0.04% T39 drench exhibited 62% less severe disease than the untreated plants. The 0.4% T39 drench led to an 84% reduction in disease severity. Observations of B. cinerea infection in leaves harvested from plants grown in the treated soils revealed that drenching with a T39 suspension induces systemic resistance against B. cinerea and primes salicylic acid- and ethylene-related gene expression in a manner proportional to the concentration of the biocontrol agent. Benzothiadiazole treatment induced resistance to gray mold independently of salicylic acid and led to strong priming of two genes known to be involved in defense against B. cinerea, Pti5 and PI2. Topics: Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; RNA, Messenger; RNA, Plant; Salicylic Acid; Solanum lycopersicum; Thiadiazoles; Trichoderma | 2014 |
Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea.
Inducible defenses that provide enhanced resistance to insect attack are nearly universal in plants. The defense-signaling cascade is mediated by the synthesis, movement, and perception of jasmonate (JA) and the interaction of this signaling molecule with other plant hormones and messengers. To explore how the interaction of JA and ethylene influences induced defenses, we employed the never-ripe (Nr) tomato mutant, which exhibits a partial block in ethylene perception, and the defenseless (def1) mutant, which is deficient in JA biosynthesis. The defense gene proteinase inhibitor (PIN2) was used as marker to compare plant responses. The Nr mutant showed a normal wounding response with PIN2 induction, but the def1 mutant did not. As expected, methyl JA (MeJA) treatment restored the normal wound response in the def1 mutant. Exogenous application of MeJA increased resistance to Helicoverpa zea, induced defense gene expression, and increased glandular trichome density on systemic leaves. Exogenous application of ethephon, which penetrates tissues and decomposes to ethylene, resulted in increased H. zea growth and interfered with the wounding response. Ethephon treatment also increased salicylic acid in systemic leaves. These results indicate that while JA plays the main role in systemic induced defense, ethylene acts antagonistically in this system to regulate systemic defense. Topics: Acetates; Animals; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Moths; Organophosphorus Compounds; Oxylipins; Plant Growth Regulators; Plant Leaves; Solanum lycopersicum; Trichomes | 2014 |
Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae.
Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Glucans; Lolium; Magnaporthe; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; RNA, Plant; Salicylic Acid; Thiadiazoles | 2014 |
The Arabidopsis PEPR pathway couples local and systemic plant immunity.
Recognition of microbial challenges leads to enhanced immunity at both the local and systemic levels. In Arabidopsis, EFR and PEPR1/PEPR2 act as the receptor for the bacterial elongation factor EF-Tu (elf18 epitope) and for the endogenous PROPEP-derived Pep epitopes, respectively. The PEPR pathway has been described to mediate defence signalling following microbial recognition. Here we show that PROPEP2/PROPEP3 induction upon pathogen challenges is robust against jasmonate, salicylate, or ethylene dysfunction. Comparative transcriptome profiling between Pep2- and elf18-treated plants points to co-activation of otherwise antagonistic jasmonate- and salicylate-mediated immune branches as a key output of PEPR signalling. Accordingly, as well as basal defences against hemibiotrophic pathogens, systemic immunity is reduced in pepr1 pepr2 plants. Remarkably, PROPEP2/PROPEP3 induction is essentially restricted to the pathogen challenge sites during pathogen-induced systemic immunity. Localized Pep application activates genetically separable jasmonate and salicylate branches in systemic leaves without significant PROPEP2/PROPEP3 induction. Our results suggest that local PEPR activation provides a critical step in connecting local to systemic immunity by reinforcing separate defence signalling pathways. Topics: Arabidopsis; Arabidopsis Proteins; Bacteria; Cyclopentanes; Ethylenes; Oxylipins; Plant Immunity; Protein Precursors; Salicylates; Signal Transduction | 2014 |
iNID: an analytical framework for identifying network models for interplays among developmental signaling in Arabidopsis.
Integration of internal and external cues into developmental programs is indispensable for growth and development of plants, which involve complex interplays among signaling pathways activated by the internal and external factors (IEFs). However, decoding these complex interplays is still challenging. Here, we present a web-based platform that identifies key regulators and Network models delineating Interplays among Developmental signaling (iNID) in Arabidopsis. iNID provides a comprehensive resource of (1) transcriptomes previously collected under the conditions treated with a broad spectrum of IEFs and (2) protein and genetic interactome data in Arabidopsis. In addition, iNID provides an array of tools for identifying key regulators and network models related to interplays among IEFs using transcriptome and interactome data. To demonstrate the utility of iNID, we investigated the interplays of (1) phytohormones and light and (2) phytohormones and biotic stresses. The results revealed 34 potential regulators of the interplays, some of which have not been reported in association with the interplays, and also network models that delineate the involvement of the 34 regulators in the interplays, providing novel insights into the interplays collectively defined by phytohormones, light, and biotic stresses. We then experimentally verified that BME3 and TEM1, among the selected regulators, are involved in the auxin-brassinosteroid (BR)-blue light interplay. Therefore, iNID serves as a useful tool to provide a basis for understanding interplays among IEFs. Topics: Arabidopsis; Brassinosteroids; Computational Biology; Cyclopentanes; Cytokinins; Databases, Genetic; DNA, Plant; Ethylenes; Indoleacetic Acids; Internet; Light; Models, Biological; Oxylipins; Plant Proteins; Protein Interaction Mapping; Salicylic Acid; Signal Transduction; Stress, Physiological; Transcriptome | 2014 |
Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots.
The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus. Topics: Amino Acids, Cyclic; Cell Wall; Colony Count, Microbial; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Laccaria; Mycorrhizae; Oxylipins; Plant Proteins; Plant Roots; Plants, Genetically Modified; Populus; RNA, Messenger; Salicylic Acid; Signal Transduction; Symbiosis; Transcription, Genetic | 2014 |
Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis.
Plants have evolved sophisticated mechanisms for integration of endogenous and exogenous signals to adapt to the changing environment. Both the phytohormones jasmonate (JA) and ethylene (ET) regulate plant growth, development, and defense. In addition to synergistic regulation of root hair development and resistance to necrotrophic fungi, JA and ET act antagonistically to regulate gene expression, apical hook curvature, and plant defense against insect attack. However, the molecular mechanism for such antagonism between JA and ET signaling remains unclear. Here, we demonstrate that interaction between the JA-activated transcription factor MYC2 and the ET-stabilized transcription factor ETHYLENE-INSENSITIVE3 (EIN3) modulates JA and ET signaling antagonism in Arabidopsis thaliana. MYC2 interacts with EIN3 to attenuate the transcriptional activity of EIN3 and repress ET-enhanced apical hook curvature. Conversely, EIN3 interacts with and represses MYC2 to inhibit JA-induced expression of wound-responsive genes and herbivory-inducible genes and to attenuate JA-regulated plant defense against generalist herbivores. Coordinated regulation of plant responses in both antagonistic and synergistic manners would help plants adapt to fluctuating environments. Topics: Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Mutation; Nuclear Proteins; Oxylipins; Signal Transduction; Transcription Factors | 2014 |
Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato.
The purpose of the study was to investigate the role of salicylic acid (SA) signalling in Ny-1-mediated hypersensitive resistance (HR) of potato (Solanum tuberosum L.) to Potato virus Y (PVY). The responses of the Ny-1 allele in the Rywal potato cultivar and transgenic NahG-Rywal potato plants that do not accumulate SA were characterized at the cytological, biochemical, transcriptome, and proteome levels. Analysis of noninoculated and inoculated leaves revealed that HR lesions started to develop from 3 d post inoculation and completely restricted the virus spread. At the cytological level, features of programmed cell death in combination with reactive oxygen species burst were observed. In response to PVY infection, SA was synthesized de novo. The lack of SA accumulation in the NahG plants led to the disease phenotype due to unrestricted viral spreading. Grafting experiments show that SA has a critical role in the inhibition of PVY spreading in parenchymal tissue, but not in vascular veins. The whole transcriptome analysis confirmed the central role of SA in orchestrating Ny-1-mediated responses and showed that the absence of SA leads to significant changes at the transcriptome level, including a delay in activation of expression of genes known to participate in defence responses. Moreover, perturbations in the expression of hormonal signalling genes were detected, shown as a switch from SA to jasmonic acid/ethylene signalling. Viral multiplication in the NahG plants was accompanied by downregulation of photosynthesis genes and activation of multiple energy-producing pathways. Topics: Apoptosis; Cyclopentanes; Down-Regulation; Energy Metabolism; Ethylenes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Oxylipins; Photosynthesis; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Potyvirus; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Solanum tuberosum; Transcriptome | 2014 |
MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana.
The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of I3M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Glucosinolates; Mutation; Oxylipins; Plant Roots; Plant Shoots; Salicylic Acid; Transcription Factors | 2014 |
Mechanisms underlying robustness and tunability in a plant immune signaling network.
The plant immune signaling network needs to be robust against attack from fast-evolving pathogens and tunable to optimize immune responses. We investigated the basis of robustness and tunability in the signaling network controlling pattern-triggered immunity (PTI) in Arabidopsis. A dynamic network model containing four major signaling sectors, the jasmonate, ethylene, phytoalexin-deficient 4, and salicylate sectors, which together govern up to 80% of the PTI levels, was built using data for dynamic sector activities and PTI levels under exhaustive combinatorial sector perturbations. Our regularized multiple regression model had a high level of predictive power and captured known and unexpected signal flows in the network. The sole inhibitory sector in the model, the ethylene sector, contributed centrally to network robustness via its inhibition of the jasmonate sector. The model's multiple input sites linked specific signal input patterns varying in strength and timing to different network response patterns, indicating a mechanism enabling tunability. Topics: Arabidopsis; Arabidopsis Proteins; Carboxylic Ester Hydrolases; Chitosan; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Models, Biological; Oxylipins; Plant Diseases; Plant Immunity; Protein Kinases; Pseudomonas syringae; Regression Analysis; Salicylic Acid; Signal Transduction | 2014 |
Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.
Volatile organic compounds (VOC) were extracted and identified from plant growth-promoting fungi (PGPF), Phoma sp., Cladosporium sp. and Ampelomyces sp., using gas chromatography-mass spectrometry (GC-MS). Among the three VOC extracted, two VOC blends (emitted from Ampelomyces sp. and Cladosporium sp.) significantly reduced disease severity in Arabidopsis plants against Pseudomonas syringae pv. tomato DC3000 (Pst). Subsequently, m-cresol and methyl benzoate (MeBA) were identified as major active volatile compounds from Ampelomyces sp. and Cladosporium sp., respectively, and found to elicit induced systemic resistance (ISR) against the pathogen. Molecular signaling for disease suppression by the VOC were investigated by treating different mutants and transgenic Arabidopsis plants impaired in salicylic acid (SA) or Jasmonic acid (JA)/ethylene (ET) signaling pathways with m-cresol and MeBA followed by challenge inoculation with Pst. Results show that the level of protection was significantly lower when JA/ET-impaired mutants were treated with MeBA, and in SA-, and JA/ET-disrupted mutants after m-cresol treatment, indicating the involvement of these signal transduction pathways in the ISR primed by the volatiles. Analysis of defense-related genes by real-time qRT-PCR showed that both the SA-and JA-signaling pathways combine in the m-cresol signaling of ISR, whereas MeBA is mainly involved in the JA-signaling pathway with partial recruitment of SA-signals. The ET-signaling pathway was not employed in ISR by the volatiles. Therefore, this study identified two novel volatile components capable of eliciting ISR that may be promising candidates in biological control strategy to protect plants from diseases. Topics: Analysis of Variance; Arabidopsis; Ascomycota; Benzoates; Cresols; Cyclopentanes; DNA Primers; Drug Resistance; Ethylenes; Gas Chromatography-Mass Spectrometry; Oxylipins; Plant Diseases; Plants, Genetically Modified; Pseudomonas syringae; Real-Time Polymerase Chain Reaction; Signal Transduction; Volatile Organic Compounds | 2014 |
Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition.
Phytophthora plurivora causes severe damage on Fagus sylvatica and is responsible for the extensive decline of European Beech throughout Europe. Unfortunately, no effective treatment against this disease is available. Phosphite (Phi) is known to protect plants against Phytophthora species; however, its mode of action towards P. plurivora is still unknown. To discover the effect of Phi on root infection, leaves were sprayed with Phi and roots were subsequently inoculated with P. plurivora zoospores. Seedling physiology, defense responses, colonization of root tissue by the pathogen and mortality were monitored. Additionally the Phi concentration in roots was quantified. Finally, the effect of Phi on mycelial growth and zoospore formation was recorded. Phi treatment was remarkably efficient in protecting beech against P. plurivora; all Phi treated plants survived infection. Phi treated and infected seedlings showed a strong up-regulation of several defense genes in jasmonate, salicylic acid and ethylene pathways. Moreover, all physiological parameters measured were comparable to control plants. The local Phi concentration detected in roots was high enough to inhibit pathogen growth. Phi treatment alone did not harm seedling physiology or induce defense responses. The up-regulation of defense genes could be explained either by priming or by facilitation of pathogen recognition of the host. Topics: Cyclopentanes; Ethylenes; Fagus; Host-Pathogen Interactions; Oxylipins; Phosphites; Phytophthora; Plant Diseases; Plant Leaves; Plant Roots; Salicylic Acid; Seedlings; Up-Regulation | 2014 |
Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation.
Ethylene is known to play an essential role in mediating hypoxic responses in plants. Here, we show that in addition to regulating hypoxic responses, ethylene also regulates cellular responses in the reoxygenation stage after anoxic treatment in Arabidopsis. We found that expression of several ethylene biosynthetic genes and ethylene-responsive factors, including ERF1 and ERF2, was induced during reoxygenation. Compared with the wild type, two ethylene-insensitive mutants (ein2-5 and ein3eil1) were more sensitive to reoxygenation and displayed damaged phenotypes during reoxygenation. To characterize the role of ethylene, we applied microarray analysis to Col-0, ein2-5 and ein3eil1 under reoxygenation conditions. Our results showed that gene transcripts involved in reactive oxygen species (ROS) detoxification, dehydration response and metabolic processes were regulated during reoxygenation. Moreover, ethylene signalling may participate in regulating these responses and maintaining the homeostasis of different phytohormones. Our work presents evidence that ethylene has distinct functions in recovery after anoxia and provides insight into the reoxygenation signalling network. Topics: Arabidopsis; Citric Acid Cycle; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Homeostasis; Models, Biological; Mutation; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Oxygen; Oxylipins; Phenotype; Plant Growth Regulators; Plant Proteins; Reactive Oxygen Species; Seedlings; Signal Transduction; Stress, Physiological; Transcriptome; Water | 2014 |
Long-term induction of defense gene expression in potato by pseudomonas sp. LBUM223 and streptomyces scabies.
Streptomyces scabies is a causal agent of common scab of potato, which generates necrotic tuber lesions. We have previously demonstrated that inoculation of potato plants with phenazine-1-carboxylic acid (PCA)- producing Pseudomonas sp. LBUM223 could significantly reduce common scab symptoms. In the present study, we investigated whether LBUM223 or an isogenic phzC- mutant not producing PCA could elicit an induced systemic resistance response in potato. The expression of eight defense-related genes (salicylic acid [SA]-related ChtA, PR-1b, PR-2, and PR-5; and jasmonic acid and ethylene-related LOX, PIN2, PAL-2, and ERF3) was quantified using newly developed TaqMan reverse-transcription quantitative polymerase chain reaction assays in 5- and 10-week-old potted potato plants. Although only wild-type LBUM223 was capable of significantly reducing common scab symptoms, the presence of both LBUM223 and its PCA-deficient mutant were equally able to upregulate the expression of LOX and PR-5. The presence of S. scabies overexpressed all SA-related genes. This indicates that (i) upregulation of potato defense-related genes by LBUM223 is unlikely to contribute to common scab's control and (ii) LBUM223's capacity to produce PCA is not involved in this upregulation. These results suggest that a direct interaction occurring between S. scabies and PCA-producing LBUM223 is more likely involved in controlling common scab development. Topics: Cyclopentanes; Disease Resistance; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oxylipins; Pest Control, Biological; Phenazines; Plant Diseases; Plant Growth Regulators; Plant Proteins; Pseudomonas; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Solanum tuberosum; Streptomyces; Up-Regulation | 2014 |
The performance of pathogenic bacterial phytosensing transgenic tobacco in the field.
Phytosensors are useful for rapid-on-the-plant detection of contaminants and agents that cause plant stress. Previously, we produced a series of plant pathogen-inducible synthetic promoters fused to an orange fluorescent protein (OFP) reporter gene and transformed them into tobacco and Arabidopsis thaliana plants; in these transgenic lines, an OFP signal is expressed commensurate with the presence of plant pathogens. We report here the results of 2 years of field experiments using a subset of these bacterial phytosensing tobacco plants. Time-course analysis of field-grown phytosensors showed that a subset of plants responded predictably to treatments with Pseudomonas phytopathogens. There was a twofold induction in the OFP fluorescence driven by two distinct salicylic acid-responsive synthetic promoters, 4 × PR1 and 4 × SARE. Most notably, transgenic plants containing 4 × PR1 displayed the earliest and highest OFP induction at 48 and 72 h postinoculation (h p.i.) upon inoculation with two phytopathogens Pseudomonas syringae pv. tomato and P. syringae pv. tabaci, respectively. These results demonstrate transgenic tobacco harbouring a synthetic inducible promoter-driven OFP could be used to facilitate monitoring and early-warning reporting of phytopathogen infections in agricultural fields. Topics: Cyclopentanes; Ethylenes; Luminescent Proteins; Nicotiana; Oxylipins; Plant Diseases; Plants, Genetically Modified; Promoter Regions, Genetic; Pseudomonas syringae; Salicylic Acid; Time Factors; Transcription, Genetic; Transgenes | 2014 |
Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation.
This study demonstrates the sequence of enhanced generation of signal molecules such as phytohormones, i.e. jasmonic acid (JA), ethylene (ET), salicylic acid (SA), and a relatively stable free radical, nitric oxide (NO), in response of Pisum sativum L. cv. Cysterski seedling leaves to the infestation of pea aphid Acyrthosiphon pisum (Harris) at a varied population size. In time from 0 to 96h after A. pisum infestation these signal molecules accumulated transiently. Moreover, the convergence of these signaling pathways occurred. JA and its methyl derivative MeJA reached the first maximum of generation at 24th hour of infestation. An increase in ET and NO generation was observed at 48th hour of infestation. The increase in SA, JA/MeJA and ET concentrations in aphid-infested leaves occurred from the 72nd to 96th hour. In parallel, an increase was demonstrated for the activities of enzymes engaged in the biosynthesis of SA, such as phenylalanine ammonia-lyase (PAL) and benzoic acid 2-hydroxylase (BA2H). Additionally, a considerable post-infestation accumulation of transcripts for PAL was observed. An increase in the activity of lipoxygenase (LOX), an important enzyme in the biosynthesis of JA was noted. This complex signaling network may contribute to the coordinated regulation of gene expression leading to specific defence responses. Topics: Animals; Aphids; Cyclopentanes; Ethylenes; Female; Free Radical Scavengers; Gene Expression Regulation, Plant; Nitric Oxide; Oxylipins; Pisum sativum; Plant Growth Regulators; Plant Leaves; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Seedlings; Signal Transduction; Time Factors | 2014 |
Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis.
The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA) and ET antagonistically regulate apical hook development, although the underlying molecular mechanism is largely unknown. Here, we report that JA represses hook formation by reducing HLS1 expression. Our results further reveal that the JA-activated transcription factor MYC2 represses EIN3 function to reduce HLS1 expression through at least the following two layers of regulation: (1) MYC2 binds to the promoter of an F-box gene, EIN3 BINDING F-BOX PROTEIN1, to induce its expression and thus promote EIN3 degradation; and (2) MYC2 physically interacts with EIN3 and inhibits its DNA binding activity. Collectively, our findings shed light on the molecular mechanism underlying the antagonism between JA and ET during apical hook development and provide insight into the coaction of multiple phytohormones in the regulation of plant growth and development. Topics: Arabidopsis; Arabidopsis Proteins; Base Sequence; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; DNA-Binding Proteins; Down-Regulation; Electrophoretic Mobility Shift Assay; Ethylenes; Nuclear Proteins; Oligonucleotide Probes; Oxylipins; Protein Binding; Proteolysis; Transcription Factors | 2014 |
Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice.
Blast, caused by the fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Phenylalanine ammonia lyase (PAL) is a key enzyme in the phenylpropanoid pathway, which leads to the biosynthesis of defense-related phytohormone salicylic acid (SA) and flavonoid-type phytoalexins sakuranetin and naringenin. However, the roles and biochemical features of individual rice PALs in defense responses to pathogens remain unclear. Here, we report that rice OsPAL06, which can catalyze the formation of trans-cinnamate using l-phenylalanine, is involved in rice root-M. oryzae interaction. OsPAL06-knockout mutant showed increased susceptibility to M. oryzae invaded from roots and developed typical leaf blast symptoms, accompanied by nearly complete disappearance of sakuranetin and naringenin and a two-third reduction of the SA level in roots. This mutant also showed compensatively induced expression of chalcone synthase, which is involved in flavonoid biosynthesis, isochorismate synthase 1, which is putatively involved in SA synthesis via another pathway, reduced jasmonate content and increased ethylene content. These results suggest that OsPAL06 is a positive regulator in preventing M. oryzae infection from roots. It may regulate defense by promoting both phytoalexin accumulation and SA signaling that synergistically and antagonistically interacts with jasmonate- and ethylene-dependent signaling, respectively. Topics: Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Gene Knockout Techniques; Host-Pathogen Interactions; Magnaporthe; Oryza; Oxylipins; Phenylalanine Ammonia-Lyase; Phytoalexins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plant Roots; Salicylic Acid; Sesquiterpenes; Signal Transduction | 2014 |
Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula.
Elevated CO(2) compromises the resistance of leguminous plants against chewing insects, but little is known about whether elevated CO(2) modifies the resistance against phloem-sucking insects or whether it has contrasting effects on the resistance of legumes that differ in biological nitrogen fixation. We tested the hypothesis that the physical and chemical resistance against aphids would be increased in Jemalong (a wild type of Medicago truncatula) but would be decreased in dnf1 (a mutant without biological nitrogen fixation) by elevated CO(2). The non-glandular and glandular trichome density of Jemalong plants increased under elevated CO(2), resulting in prolonged aphid probing. In contrast, dnf1 plants tended to decrease foliar trichome density under elevated CO(2), resulting in less surface and epidermal resistance to aphids. Elevated CO(2) enhanced the ineffective salicylic acid-dependent defence pathway but decreased the effective jasmonic acid/ethylene-dependent defence pathway in aphid-infested Jemalong plants. Therefore, aphid probing time decreased and the duration of phloem sap ingestion increased on Jemalong under elevated CO(2), which, in turn, increased aphid growth rate. Overall, our results suggest that elevated CO(2) decreases the chemical resistance of wild-type M. truncatula against aphids, and that the host's biological nitrogen fixation ability is central to this effect. Topics: Animals; Aphids; Carbon Dioxide; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Regulation, Plant; Medicago truncatula; Oxylipins; Phloem; Pisum sativum; Plant Growth Regulators; Plant Leaves; Salicylic Acid; Signal Transduction; Trichomes | 2014 |
Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis.
An endophytic fungus, Heteroconium chaetospira isolate BC2HB1 (Hc), suppressed clubroot (Plasmodiophora brassicae -Pb) on canola in growth-cabinet trials. Confocal microscopy demonstrated that Hc penetrated canola roots and colonized cortical tissues. Based on qPCR analysis, the amount of Hc DNA found in canola roots at 14 days after treatment was negatively correlated (r = 0.92, P<0.001) with the severity of clubroot at 5 weeks after treatment at a low (2×10(5) spores pot(-1)) but not high (2×10(5) spores pot(-1)) dose of pathogen inoculum. Transcript levels of nine B. napus (Bn) genes in roots treated with Hc plus Pb, Pb alone and a nontreated control were analyzed using qPCR supplemented with biochemical analysis for the activity of phenylalanine ammonia lyases (PAL). These genes encode enzymes involved in several biosynthetic pathways related potentially to plant defence. Hc plus Pb increased the activity of PAL but not that of the other two genes (BnCCR and BnOPCL) involved also in phenylpropanoid biosynthesis, relative to Pb inoculation alone. In contrast, expression of several genes involved in the jasmonic acid (BnOPR2), ethylene (BnACO), auxin (BnAAO1), and PR-2 protein (BnPR-2) biosynthesis were upregulated by 63, 48, 3, and 3 fold, respectively, by Hc plus Pb over Pb alone. This indicates that these genes may be involved in inducing resistance in canola by Hc against clubroot. The upregulation of BnAAO1 appears to be related to both pathogenesis of clubroot and induced defence mechanisms in canola roots. This is the first report on regulation of specific host genes involved in induced plant resistance by a non-mycorrhizal endophyte. Topics: Brassica rapa; Cyclopentanes; Ethylenes; Indoleacetic Acids; Mycorrhizae; Oxylipins; Plant Diseases; Plasmodiophorida; Protozoan Infections; Transcriptional Activation; Up-Regulation | 2014 |
Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis.
The 14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Although the genome-wide analysis of this family has been carried out in certain plant species, little is known about 14-3-3 protein genes in rubber tree (Hevea brasiliensis). In this study, we identified 10 14-3-3 protein genes (designated as HbGF14a to HbGF14j) in the latest rubber tree genome. A phylogenetic tree was constructed and found to demonstrate that HbGF14s can be divided into two major groups. Tissue-specific expression profiles showed that 10 HbGF14 were expressed in at least one of the tissues, which suggested that HbGF14s participated in numerous cellular processes. The 10 HbGF14s responded to jasmonic acid (JA) and ethylene (ET) treatment, which suggested that these HbGF14s were involved in response to JA and ET signaling. The target of HbGF14c protein was related to small rubber particle protein, a major rubber particle protein that is involved in rubber biosynthesis. These findings suggested that 14-3-3 proteins may be involved in the regulation of natural rubber biosynthesis. Topics: 14-3-3 Proteins; Cyclopentanes; Ethylenes; Hevea; Oxylipins; Phylogeny; Plant Proteins | 2014 |
Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways.
Rhizobacteria are known to induce defense responses in plants without causing disease symptoms, resulting in increased resistance to plant pathogens. This study investigated how Streptomyces sp. strain AcH 505 suppressed oak powdery mildew infection in pedunculate oak, by analyzing RNA-Seq data from singly- and co-inoculated oaks. We found that this Streptomyces strain elicited a systemic defense response in oak that was, in part, enhanced upon pathogen challenge. In addition to induction of the jasmonic acid/ethylene-dependent pathway, the RNA-Seq data suggests the participation of the salicylic acid-dependent pathway. Transcripts related to tryptophan, phenylalanine, and phenylpropanoid biosynthesis were enriched and phenylalanine ammonia lyase activity increased, indicating that priming by Streptomyces spp. in pedunculate oak shares some determinants with the Pseudomonas-Arabidopsis system. Photosynthesis-related transcripts were depleted in response to powdery mildew infection, but AcH 505 alleviated this inhibition, which suggested there is a fitness benefit for primed plants upon pathogen challenge. This study offers novel insights into the mechanisms of priming by actinobacteria and highlights their capacity to activate plant defense responses in the absence of pathogen challenge. Topics: Ascomycota; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gene Ontology; High-Throughput Nucleotide Sequencing; Host-Pathogen Interactions; Oxylipins; Photosynthesis; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Roots; Quercus; Salicylic Acid; Secondary Metabolism; Sequence Analysis, RNA; Signal Transduction; Streptomyces | 2014 |
Validation of potential reference genes for qPCR in maize across abiotic stresses, hormone treatments, and tissue types.
The reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful and widely used technique for the measurement of gene expression. Reference genes, which serve as endogenous controls ensure that the results are accurate and reproducible, are vital for data normalization. To bolster the literature on reference gene selection in maize, ten candidate reference genes, including eight traditionally used internal control genes and two potential candidate genes from our microarray datasets, were evaluated for expression level in maize across abiotic stresses (cold, heat, salinity, and PEG), phytohormone treatments (abscisic acid, salicylic acid, jasmonic acid, ethylene, and gibberellins), and different tissue types. Three analytical software packages, geNorm, NormFinder, and Bestkeeper, were used to assess the stability of reference gene expression. The results revealed that elongation factor 1 alpha (EF1α), tubulin beta (β-TUB), cyclophilin (CYP), and eukaryotic initiation factor 4A (EIF4A) were the most reliable reference genes for overall gene expression normalization in maize, while GRP (Glycine-rich RNA-binding protein), GLU1(beta-glucosidase), and UBQ9 (ubiquitin 9) were the least stable and most unsuitable genes. In addition, the suitability of EF1α, β-TUB, and their combination as reference genes was confirmed by validating the expression of WRKY50 in various samples. The current study indicates the appropriate reference genes for the urgent requirement of gene expression normalization in maize across certain abiotic stresses, hormones, and tissue types. Topics: Abscisic Acid; Cyclopentanes; Cyclophilins; Droughts; Ethylenes; Eukaryotic Initiation Factor-4A; Gene Expression Regulation, Plant; Genes, Essential; Genes, Plant; Gibberellins; Oxylipins; Peptide Elongation Factor 1; Real-Time Polymerase Chain Reaction; Salicylic Acid; Zea mays | 2014 |
Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco.
Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity. Topics: Abscisic Acid; Cyclopentanes; Cytokinins; Ethylenes; Host-Pathogen Interactions; Indoleacetic Acids; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Pseudomonas syringae; Salicylic Acid | 2014 |
Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper.
Plants are defended from attack by emission of volatile organic compounds (VOCs) that can act directly against pathogens and herbivores or indirectly by recruiting natural enemies of herbivores. However, microbial VOC have been less investigated as potential triggers of plant systemic defense responses against pathogens in the field. Bacillus amyloliquefaciens strain IN937a, a plant growth-promoting rhizobacterium that colonizes plant tissues, stimulates induced systemic resistance (ISR) via its emission of VOCs. We investigated the ISR capacity of VOCs and derivatives collected from strain IN937a against bacterial spot disease caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Of 15 bacterial VOCs and their derivatives, 3-pentanol, which is a C8 amyl alcohol reported to be a component of sex pheromones in insects, was selected for further investigation. Pathogens were infiltrated into pepper leaves 10, 20, 30, and 40 days after treatment and transplantation to the field. Disease severity was assessed 7 days after transplantation. Treatment with 3-pentanol significantly reduced disease severity caused by X. axonopodis and naturally occurring Cucumber mosaic virus in field trials over 2 years. We used quantitative real-time polymerase chain analysis to examine Pathogenesis-Related genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene defense signaling. The expression of Capsicum annuum Pathogenesis-Related protein 1 (CaPR1), CaPR2, and Ca protease inhibitor2 (CaPIN2) increased in field-grown pepper plants treated with 3-pentanol. Taken together, our results show that 3-pentanol triggers induced resistance by priming SA and JA signaling in pepper under field conditions. Topics: Bacillus; Capsicum; Cucumovirus; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Pentanols; Plant Diseases; Plant Proteins; Real-Time Polymerase Chain Reaction; Salicylic Acid; Volatile Organic Compounds; Xanthomonas axonopodis | 2014 |
Potato virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack.
In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus Y(NTN) (PVY(NTN) ) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVY(NTN) -infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVY(NTN) -infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVY(NTN) -infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVY(NTN) -infected plants before CPB larvae infestation, implicating the importance of PVY(NTN) infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems. Topics: Animals; Coleoptera; Cyclopentanes; Ethylenes; Herbivory; Host-Pathogen Interactions; Indoleacetic Acids; Larva; Molecular Sequence Data; Oxylipins; Plant Diseases; Plant Growth Regulators; Potyvirus; Signal Transduction; Solanum tuberosum; Transcriptome; Volatile Organic Compounds | 2014 |
Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses.
Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses. Topics: Brachypodium; Cluster Analysis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Models, Biological; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Viruses; Salicylic Acid; Satellite Viruses; Setaria Plant; Signal Transduction; Species Specificity | 2014 |
The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation.
Stresses decouple nitrate assimilation and photosynthesis through stress-initiated nitrate allocation to roots (SINAR), which is mediated by the nitrate transporters NRT1.8 and NRT1.5 and functions to promote stress tolerance. However, how SINAR communicates with the environment remains unknown. Here, we present biochemical and genetic evidence demonstrating that in Arabidopsis thaliana, ethylene (ET) and jasmonic acid (JA) affect the crosstalk between SINAR and the environment. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that ethylene response factors (ERFs), including OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59, bind to the GCC boxes in the NRT1.8 promoter region, while ETHYLENE INSENSITIVE3 (EIN3) binds to the EIN3 binding site motifs in the NRT1.5 promoter. Genetic assays showed that cadmium and sodium stresses initiated ET/JA signaling, which converged at EIN3/EIN3-Like1 (EIL1) to modulate ERF expression and hence to upregulate NRT1.8. By contrast, ET and JA signaling mediated the downregulation of NRT1.5 via EIN3/EIL1 and other, unknown component(s). SINAR enhanced stress tolerance and decreased plant growth under nonstressed conditions through the ET/JA-NRT1.5/NRT1.8 signaling module. Interestingly, when nitrate reductase was impaired, SINAR failed to affect either stress tolerance or plant growth. These data suggest that SINAR responds to environmental conditions through the ET/JA-NRT signaling module, which further modulates stress tolerance and plant growth in a nitrate reductase-dependent manner. Topics: Adaptation, Physiological; Anion Transport Proteins; Arabidopsis; Arabidopsis Proteins; Chromatin Immunoprecipitation; Cyclopentanes; DNA-Binding Proteins; Electrophoretic Mobility Shift Assay; Environment; Ethylenes; Gene Expression Regulation, Plant; Mutation; Nitrates; Nuclear Proteins; Oxylipins; Plant Roots; Plants, Genetically Modified; Promoter Regions, Genetic; Protein Binding; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Stress, Physiological; Transcription Factors | 2014 |
Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway.
The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicotine biosynthesis, the NICOTINE2-locus transcription factor gene ETHYLENE RESPONSE FACTOR189 (ERF189) and its target structural genes, which function in nicotine biosynthesis and transport, were strongly suppressed, resulting in decreased total alkaloid levels. Conversely, NUP1 overexpression had the opposite effect. In these experiments, the expression levels of the MYC2 transcription factor gene and its jasmonate-inducible target gene were not altered. Inhibiting tobacco alkaloid biosynthesis by suppressing the expression of genes encoding enzymes in the nicotine pathway did not affect the expression of ERF189 and other nicotine pathway genes, indicating that ERF189 is not regulated by cellular alkaloid levels. Suppressing the expression of jasmonate signaling components in cultured tobacco cells showed that NUP1 acts downstream of the CORONATINE INSENSITIVE1 receptor and MYC2, but upstream of ERF189. These results suggest that although jasmonate-activated expression of MYC2 induces the expression of both NUP1 and ERF189, expression of ERF189 may actually be mediated by NUP1. Furthermore, NUP1 overexpression in tobacco plants inhibited the long-range transport of nicotine from the roots to the aerial parts. Thus, NUP1 not only mediates the uptake of tobacco alkaloids into root cells, but also positively controls the expression of ERF189, a key gene in the biosynthesis of these alkaloids. Topics: Amino Acids; Biological Transport; Cell Membrane; Cells, Cultured; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Indenes; Membrane Transport Proteins; Nicotiana; Nicotine; Oxylipins; Plant Proteins; Plant Roots; Transcription Factors | 2014 |
Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction pathways in eukaryotic cells. In tobacco, two MAPK, wound-induced protein kinase (WIPK) and salicylic acid (SA)-induced protein kinase (SIPK), are activated by biotic and abiotic stresses. Both WIPK and SIPK positively regulate the biosynthesis of jasmonic acid (JA) or ethylene (ET) while negatively regulating SA accumulation. We showed previously that recombinant tobacco MAPK phosphatase (NtMKP1) protein dephosphorylates and inactivates SIPK in vitro, and overexpression of NtMKP1 repressed wound-induced activation of both SIPK and WIPK. To elucidate the role of NtMKP1 in response to biotic and abiotic stresses, we generated transgenic tobacco plants in which NtMKP1 expression was suppressed. Suppression of NtMKP1 expression resulted in enhanced activation of WIPK and SIPK and production of both JA and ET upon wounding. Wound-induced expression of JA- or ET-inducible genes, basic PR-1 and PI-II, was also significantly enhanced in these plants. Furthermore, NtMKP1-suppressed plants exhibited enhanced resistance against a necrotrophic pathogen, Botrytis cinerea, and lepidopteran herbivores, Mamestra brassicae and Spodoptera litura. These results suggest that NtMKP1 negatively regulates wound response and resistance against both necrotrophic pathogens and herbivorous insects through suppression of JA or ET pathways via inactivation of MAPK. Topics: Animals; Botrytis; Cyclopentanes; Dual Specificity Phosphatase 1; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Larva; Lepidoptera; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Plants, Genetically Modified; RNA, Plant; Salicylic Acid; Stress, Physiological | 2013 |
The DELLA protein RGL3 positively contributes to jasmonate/ethylene defense responses.
Gibberellins (GA) are phytohormones controlling major aspects of plant lifecycle including seed germination, growth and flower development. GA signaling is also involved in resistance to adverse conditions, thus providing a mechanism for environmentally responsive growth regulation. We recently characterized the function of a core component of the GA signal transduction pathway: RGL3. RGL3 belongs to the DELLA family of negative GA response regulators. Jasmonate (JA) rapidly induces RGL3 expression, which in turn enhances the expression of JA-responsive genes by inhibiting the activity of key repressors of JA signaling, the JAZ proteins. JA and ethylene (ET) are well known to play synergistic roles in plant disease resistance. Accordingly, we showed that RGL3 regulates plant defense responses by modulating JA/ET-mediated defense signaling pathway. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Gibberellins; Oxylipins; Plant Diseases; Plant Growth Regulators; Repressor Proteins; Signal Transduction | 2013 |
A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis.
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Base Sequence; Cell Death; Coproporphyrinogen Oxidase; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Molecular Sequence Data; Mutation; Oomycetes; Oxylipins; Plant Diseases; Plants, Genetically Modified; Salicylic Acid | 2013 |
Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.).
Maize rough dwarf disease (MRDD, a viral disease) results in significant grain yield losses, while genetic basis of which is largely unknown. Based on comparative genomics, eukaryotic translation initiation factor 4E (eIF4E) was considered as a candidate gene for MRDD resistance, validation of which will help to understand the possible genetic mechanism of this disease. ZmeIF4E (orthologs of eIF4E gene in maize) encodes a protein of 218 amino acids, harboring five exons and no variation in the cDNA sequence is identified between the resistant inbred line, X178 and susceptible one, Ye478. ZmeIF4E expression was different in the two lines plants treated with three plant hormones, ethylene, salicylic acid, and jasmonates at V3 developmental stage, suggesting that ZmeIF4E is more likely to be involved in the regulation of defense gene expression and induction of local and systemic resistance. Moreover, four cis-acting elements related to plant defense responses, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS were detected in ZmeIF4E promoter for harboring sequence variation in the two lines. Association analysis with 163 inbred lines revealed that one SNP in EECCRCAH1 is significantly associated with CSI of MRDD in two environments, which explained 3.33 and 9.04 % of phenotypic variation, respectively. Meanwhile, one SNP in GT-1 motif was found to affect MRDD resistance only in one of the two environments, which explained 5.17 % of phenotypic variation. Collectively, regulatory motifs respectively harboring the two significant SNPs in ZmeIF4E promoter could be involved in the defense process of maize after viral infection. These results contribute to understand maize defense mechanisms against maize rough dwarf virus. Topics: Base Sequence; Cyclopentanes; Disease Resistance; Ethylenes; Eukaryotic Initiation Factor-4E; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Molecular Sequence Data; Nucleotide Motifs; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Polymorphism, Single Nucleotide; Promoter Regions, Genetic; Regulatory Sequences, Nucleic Acid; Reoviridae; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Sequence Analysis, DNA; Zea mays | 2013 |
Differential regulation of Salmonella typhimurium genes involved in O-antigen capsule production and their role in persistence within tomato fruit.
Enteric pathogens, including non-typhoidal Salmonella spp. and enterovirulent Escherichia coli, are capable of persisting and multiplying within plants. Yet, little is still known about the mechanisms of these interactions. This study identified the Salmonella yihT gene (involved in synthesis of the O-antigen capsule) as contributing to persistence in immature tomato fruit. Deletion of yihT reduced competitive fitness of S. enterica sv. Typhimurium in green (but not ripe, regardless of color) tomato fruit by approximately 3 logs. The yihT recombinase-based in vivo expression technology (RIVET) reporter was strongly activated in unripe tomato fruit, and fitness of the mutant inversely correlated with the level of the yihT gene expression. Expression of yihT in mature tomato fruit was low, and yihT did not affect competitive fitness within mature fruit. To better understand the molecular basis of the phenotype, behaviors of the yihT RIVET reporter and the yihT mutant were tested in tomato fruit defective in ethylene signaling. These experiments suggest a role for functional ethylene-mediated signaling in the persistence of Salmonella spp. within tomato fruit. Furthermore, jasmonic acid and its precursors strongly reduced expression of yihT. Topics: Bacterial Proteins; Cyclopentanes; Ethylenes; Fruit; Gene Expression; Gene Expression Regulation, Bacterial; Genes, Reporter; Host-Pathogen Interactions; O Antigens; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Recombination, Genetic; Salmonella typhimurium; Sequence Deletion; Signal Transduction; Solanum lycopersicum | 2013 |
Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense.
Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates antiherbivore defenses in the Solanaceae, but in other plant families, peptides with analogous activity have remained elusive. In the current study, we demonstrate that a member of the maize (Zea mays) plant elicitor peptide (Pep) family, ZmPep3, regulates responses against herbivores. Consistent with being a signal, expression of the ZmPROPEP3 precursor gene is rapidly induced by Spodoptera exigua oral secretions. At concentrations starting at 5 pmol per leaf, ZmPep3 stimulates production of jasmonic acid, ethylene, and increased expression of genes encoding proteins associated with herbivory defense. These include proteinase inhibitors and biosynthetic enzymes for production of volatile terpenes and benzoxazinoids. In accordance with gene expression data, plants treated with ZmPep3 emit volatiles similar to those from plants subjected to herbivory. ZmPep3-treated plants also exhibit induced accumulation of the benzoxazinoid phytoalexin 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside. Direct and indirect defenses induced by ZmPep3 contribute to resistance against S. exigua through significant reduction of larval growth and attraction of Cotesia marginiventris parasitoids. ZmPep3 activity is specific to Poaceous species; however, peptides derived from PROPEP orthologs identified in Solanaceous and Fabaceous plants also induce herbivory-associated volatiles in their respective species. These studies demonstrate that Peps are conserved signals across diverse plant families regulating antiherbivore defenses and are likely to be the missing functional homologs of systemin outside of the Solanaceae. Topics: Animals; Bodily Secretions; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Host-Parasite Interactions; Immunity, Innate; Oxylipins; Protease Inhibitors; Protein Precursors; Signal Transduction; Spodoptera; Zea mays | 2013 |
Mutation of a Short Variable Region in HCpro Protein of Potato virus A Affects Interactions with a Microtubule-Associated Protein and Induces Necrotic Responses in Tobacco.
Helper component proteinase (HCpro) is a multifunctional protein of potyviruses (genus Potyvirus). HCpro of Potato virus A (PVA) interacts with the microtubule-associated protein HIP2 in host cells, and depletion of HIP2 reduces virus accumulation. This study shows that HCpro of Potato virus Y and Tobacco etch virus also interact with HIP2. The C-proximal portion of PVA HCpro determines the interaction with HIP2 and was found to contain a stretch of six residues comprising a highly variable region (HVR) in potyviruses. Mutations in HVR reduced PVA accumulation in tobacco plants and induced necrotic symptoms novel to PVA. Microarray and quantitative reverse transcription polymerase chain reaction analyses revealed induction of many defense-related genes including ethylene- and jasmonic acid-inducible pathways in systemically infected leaves at necrosis onset. Salicylic acid-mediated signaling was dispensable for the response. Genes related to microtubule functions were down-regulated. Structural modeling of HCpro suggested that all mutations in HVR caused conformational changes in adjacent regions containing functionally important motifs conserved in potyviruses. Those mutations, which also caused conformational changes in HVR, led to the greatest reduction of fitness. Our results implicate HVR in the regulation of HCpro conformation and virus-host interactions and suggest that mutation of HVR induces host defense. Topics: Amino Acid Sequence; Cyclopentanes; Cysteine Endopeptidases; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Microtubule-Associated Proteins; Models, Molecular; Molecular Sequence Data; Mutation; Nicotiana; Oligonucleotide Array Sequence Analysis; Oxylipins; Phenotype; Plant Diseases; Plant Immunity; Plant Leaves; Plant Proteins; Potyvirus; Protein Binding; Protein Conformation; Sequence Alignment; Signal Transduction; Viral Proteins | 2013 |
Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs.
· Small RNAs play important roles in resistance to plant viruses and the complex responses against pathogens and leaf-chewing insects. · We investigated whether small RNA pathways are involved in Arabidopsis resistance against a phloem-feeding insect, the green peach aphid (Myzus persicae). We used a 2-wk fecundity assay to assess aphid performance on Arabidopsis RNA silencing and defence pathway mutants. Quantitative real-time polymerase chain reaction was used to monitor the transcriptional activity of defence-related genes in plants of varying aphid susceptibility. High-performance liquid chromatography-mass spectrometry was employed to measure the accumulation of the antimicrobial compound camalexin. Artificial diet assays allowed the assessment of the effect of camalexin on aphid performance. · Myzus persicae produces significantly less progeny on Arabidopsis microRNA (miRNA) pathway mutants. Plants unable to process miRNAs respond to aphid infestation with increased induction of PHYTOALEXIN DEFICIENT3 (PAD3) and production of camalexin. Aphids ingest camalexin when feeding on Arabidopsis and are more successful on pad3 and cyp79b2/cyp79b3 mutants defective in camalexin production. Aphids produce less progeny on artificial diets containing camalexin. · Our data indicate that camalexin functions beyond antimicrobial defence to also include hemipteran insects. This work also highlights the extensive role of the miRNA-mediated regulation of secondary metabolic defence pathways with relevance to resistance against a hemipteran pest. Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Feeding Behavior; Fertility; Gene Expression Regulation, Plant; Indoles; MicroRNAs; Mutation; Oxylipins; Phloem; Plant Diseases; Prunus; Reproduction; Signal Transduction; Survival Analysis; Thiazoles; Up-Regulation | 2013 |
Pattern-triggered immunity suppresses programmed cell death triggered by fumonisin b1.
Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36-48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling. Topics: Arabidopsis; Arabidopsis Proteins; Bacterial Proteins; Cell Death; Chitin; Cyclopentanes; Ethylenes; Flagellin; Fumonisins; Gene Expression Regulation, Plant; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Mycotoxins; Oxylipins; Peptide Elongation Factor Tu; Peptide Fragments; Plant Growth Regulators; Plant Immunity; Salicylic Acid; Signal Transduction | 2013 |
New clothes for the jasmonic acid receptor COI1: delayed abscission, meristem arrest and apical dominance.
In a screen for delayed floral organ abscission in Arabidopsis, we have identified a novel mutant of CORONATINE INSENSITIVE 1 (COI1), the F-box protein that has been shown to be the jasmonic acid (JA) co-receptor. While JA has been shown to have an important role in senescence, root development, pollen dehiscence and defense responses, there has been little focus on its critical role in floral organ abscission. Abscission, or the detachment of organs from the main body of a plant, is an essential process during plant development and a unique type of cell separation regulated by endogenous and exogenous signals. Previous studies have indicated that auxin and ethylene are major plant hormones regulating abscission; and here we show that regulation of floral organ abscission is also controlled by jasmonic acid in Arabidopsis thaliana. Our characterization of coi1-1 and a novel allele (coi1-37) has also revealed an essential role in apical dominance and floral meristem arrest. In this study we provide genetic evidence indicating that delayed abscission 4 (dab4-1) is allelic to coi1-1 and that meristem arrest and apical dominance appear to be evolutionarily divergent functions for COI1 that are governed in an ecotype-dependent manner. Further characterizations of ethylene and JA responses of dab4-1/coi1-37 also provide new information suggesting separate pathways for ethylene and JA that control both floral organ abscission and hypocotyl growth in young seedlings. Our study opens the door revealing new roles for JA and its interaction with other hormones during plant development. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Flowers; Hypocotyl; Meristem; Oxylipins; Plant Growth Regulators; Seedlings; Signal Transduction | 2013 |
Deep sequencing reveals transcriptome re-programming of Taxus × media cells to the elicitation with methyl jasmonate.
Plant cell culture represents an alternative source for producing high-value secondary metabolites including paclitaxel (Taxol®), which is mainly produced in Taxus and has been widely used in cancer chemotherapy. The phytohormone methyl jasmonate (MeJA) can significantly increase the production of paclitaxel, which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. In cell culture, MeJA also elicits the accumulation of paclitaxel; however, the mechanism is still largely unknown.. To obtain insight into the global regulation mechanism of MeJA in the steady state of paclitaxel production (7 days after MeJA addition), especially on paclitaxel biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated Taxus × media cells and obtained ∼ 32.5 M high quality reads, from which 40,348 unique sequences were obtained by de novo assembly. Expression level analysis indicated that a large number of genes were associated with transcriptional regulation, DNA and histone modification, and MeJA signaling network. All the 29 known genes involved in the biosynthesis of terpenoid backbone and paclitaxel were found with 18 genes showing increased transcript abundance following elicitation of MeJA. The significantly up-regulated changes of 9 genes in paclitaxel biosynthesis were validated by qRT-PCR assays. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in paclitaxel biosynthesis were identified. We also found some genes putatively involved in the transport and degradation of paclitaxel. Potential target prediction of miRNAs indicated that miRNAs may play an important role in the gene expression regulation following the elicitation of MeJA.. Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of Taxus cells and is helpful to understand how MeJA elicits other plant species besides Taxus. Topics: Acetates; Cell Line; Cells, Cultured; Computational Biology; Cyclopentanes; Databases, Genetic; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; High-Throughput Nucleotide Sequencing; MicroRNAs; Molecular Sequence Annotation; Oxylipins; Paclitaxel; Plant Cells; Plant Growth Regulators; Reproducibility of Results; RNA, Messenger; Taxus; Terpenes; Transcriptome | 2013 |
The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals.
ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Droughts; Ethylenes; Gene Expression Regulation, Plant; Heat-Shock Response; Oxylipins; Peptide Termination Factors; Plant Leaves; Plant Stomata; Plant Transpiration; Plants, Genetically Modified; Regulatory Sequences, Nucleic Acid; Response Elements; Salinity; Salt Tolerance; Stress, Physiological | 2013 |
Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
Based on Arabidopsis microarray, we found 8 WRKY genes were up-regulated with Oxalic acid (OA) challenge, AtWRKY28 and AtWRKY75 overexpression lines showed enhanced resistance to OA and Sclerotinia sclerotiorum. The WRKY transcription factors are involved in various plant physiological processes and most remarkably in coping with diverse biotic and abiotic stresses. Oxalic acid (OA) is an important pathogenicity-determinant of necrotrophic phytopathogenic fungi, such as Sclerotina sclerotiorum (S. sclerotiorum) and Botrytis cinerea (B. cinerea). The identification of differentially expressed genes under OA stress should facilitate our understanding of the pathogenesis mechanism of OA-producing fungi in host plants, and the mechanism of how plants respond to OA and pathogen infection. Based on Arabidopsis oligo microarray, we found 8 WRKY genes that were up-regulated upon OA challenge. The Arabidopsis plants overexpressing AtWRKY28 and AtWRK75 showed enhanced resistance to OA and S. sclerotiorum simultaneously. Furthermore, our results showed that overexpression of AtWRKY28 and AtWRK75 induced oxidative burst in host plants, which suppressed the hyphal growth of S. sclerotiorum, and consequently inhibited fungal infection. Gene expression profiling indicates that both AtWRKY28 and AtWRKY75 are transcriptional regulators of salicylic acid (SA)- and jasmonic acid/ethylene (JA/ET)-dependent defense signaling pathways, AtWRKY28 and AtWRKY75 mainly active JA/ET pathway to defend Arabidopsis against S. sclerotiorum and oxalic acid stress. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Disease Resistance; DNA-Binding Proteins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Oxalic Acid; Oxylipins; Plant Diseases; Plants, Genetically Modified; Respiratory Burst; Transcription Factors | 2013 |
Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses.
Rising atmospheric CO2 concentrations can affect the induced defense of plants against herbivory by chewing insects, but little is known about whether elevated CO2 can change the inducible defense of plants against herbivory by aphids, which are phloem-sucking rather than tissue-chewing insects. Interactions between the green peach aphid Myzus persicae and four isogenic Arabidopsis thaliana genotypes including wild type and three induced defense pathway deficient mutants were examined under ambient and elevated CO2. Our data showed that elevated CO2 increased the population abundance of peach aphid when reared on wild type and SA-deficient mutant plants. Regardless of aphid infestation, elevated CO2 decreased the jasmonic acid (JA) but increased the salicylic acid (SA) level in wild-type plants. In addition, elevated CO2 increased SA level in SA-deficient mutant while did not change the JA level in JA-deficient mutant. Pathway enrichment analysis based on high-throughput transcriptome sequencing suggested that CO2 level, aphid infestation, and their interactions (respectively) altered plant defense pathways. Furthermore, qPCR results showed that elevated CO2 up-regulated the expression of SA-dependent defense genes but down-regulated the expression of JA/ethylene-dependent defense genes in wild-type plants infested by aphids. The current study indicated that elevated CO2 tended to enhance the ineffective defense-SA signaling pathway and to reduce the effective defense-JA signaling pathway against aphids, which resulted in increased aphid numbers. Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Carbon Dioxide; Cyclopentanes; Down-Regulation; Ethylenes; Female; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Parasite Interactions; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Salicylic Acid; Signal Transduction; Transcriptome; Up-Regulation | 2013 |
Phytohormone and assimilate profiles in emasculated flowers of the black locust (Robinia pseudoacacia) during development.
Emasculation and bagging of flowers, which are widely used in the controlled pollination of monoclinous plants, may induce premature senescence, flower abscission and low fruit set. To determine the mechanism responsible for these phenomena, levels of abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA), ethylene, soluble sugars, reducing sugars and free amino acids in black locust (Robinia pseudoacacia) flowers subjected to different treatments were quantified at different developmental stages. The phytohormones and assimilates were also quantified in untreated flowers to investigate the presence of discernible patterns. The levels of ethylene and ABA in emasculated and bagged (EB) flowers increased prematurely compared with those of untreated flowers, whereas the content of reducing sugars in EB flowers decreased compared with that of untreated flowers. These results indicated that the premature increase in ethylene and ABA synthesis, and the decrease in reducing sugars content, in EB flowers may cause flower abscission and result in low fruit set, which may be relevant for assimilate applications and future research on the regulation of controlled pollinations with exogenous phytohormones. Topics: Abscisic Acid; Botany; Cyclopentanes; Ethylenes; Flowers; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Robinia | 2013 |
Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis.
Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene is a well-known inducer of senescence, including fruit ripening and flower and leaf senescence. However, the underlying molecular mechanism of ethylene-induced leaf senescence remains to be elucidated. Here, we examine ethylene-insensitive3 (EIN3), a key transcription factor in ethylene signaling, and find that EIN3 is a functional senescence-associated gene. Constitutive overexpression or temporary activation of EIN3 is sufficient to accelerate leaf senescence symptoms. Conversely, loss of EIN3 and EIN3-Like1 (its close homolog) function leads to a delay in age-dependent and ethylene-, jasmonic acid-, or dark-induced leaf senescence. We further found that EIN3 acts downstream of ORESARA2 (ORE2)/ORE3/EIN2 to repress miR164 transcription and upregulate the transcript levels of ORE1/NAC2, a target gene of miR164. EIN3 directly binds to the promoters of microRNA164 (miR164), and this binding activity progressively increases during leaf ageing. Genetic analysis revealed that overexpression of miR164 or knockout of ORE1/NAC2 represses EIN3-induced early-senescence phenotypes. Collectively, our study defines a continuation of the signaling pathway involving EIN2-EIN3-miR164-NAC2 in regulating leaf senescence and provides a mechanistic insight into how ethylene promotes the progression of leaf senescence in Arabidopsis thaliana. Topics: Arabidopsis; Arabidopsis Proteins; Cellular Senescence; Cyclopentanes; Darkness; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Genes, Reporter; MicroRNAs; Models, Biological; Mutation; Nuclear Proteins; Oxylipins; Plant Growth Regulators; Plant Leaves; Promoter Regions, Genetic; Protein Binding; Receptors, Cell Surface; Repressor Proteins; Signal Transduction; Time Factors; Transcription Factors; Transcription, Genetic | 2013 |
The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi.
Complex plant defenses that include the hypersensitive response (HR) are mediated by plant hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene. We previously isolated the Arabidopsis DEAR1 (DREB AND EAR MOTIF PROTEIN 1) regulator and showed that its overexpression DEAR1 (DEAR1ox) resulted in a dwarf phenotype and lesion-like cell death, accompanied by elevated expression of PR (PATHOGENESIS-RELATED) genes. Here, we show that transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) has enhanced resistance to the necrotrophic fungus Botrytis cinerea (B. cinerea). This result indicates that DEAR1 represses negative regulators of plant defense responses, including transcriptional repressors belonging to the ERF (ETHYLEN RESPONSE FACTOR) family. Knockout mutants of ERF9 (erf9), which were down-regulated in DEAR1ox plants, showed transcriptional promotion of PDF1.2 (PATHOGEN-INDUCIBLE PLANT DEFENSIN) genes, which serve as positive markers for the ethylene/jasmonic acid (JA) signaling pathway and provide enhanced resistance to B. cinerea. Biochemical assays demonstrated that the ERF9 in capable of binding to the GCC box, a cis-element contained in the promoters of the PDF1.2 gene that possesses trans-repression activity. Moreover, infection with B. cinerea resulted in the promotion of the PDF1.2 expression, coinciding with suppression of the ERF9 gene under the control of the DEAR1 gene. These results indicate that the transcriptional repressor ERF9 participates in plant defense mechanisms against necrotic fungi mediated by the DEAR1-dependent ethylene/JA signaling pathway. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cell Nucleus; Cyclopentanes; Defensins; Disease Resistance; Ethylenes; Gene Expression; Gene Expression Regulation, Plant; Gene Knockout Techniques; Models, Molecular; Oxylipins; Plant Diseases; Plant Growth Regulators; Plants, Genetically Modified; Promoter Regions, Genetic; Pseudomonas syringae; Salicylic Acid; Sequence Deletion; Signal Transduction; Transcription Factors | 2013 |
Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought.
Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress. Topics: Abscisic Acid; Adaptation, Physiological; Cyclopentanes; Droughts; Ethylenes; Gene Expression Regulation, Plant; Genome-Wide Association Study; Genome, Plant; Gossypium; Oxylipins; Photosynthesis; Plant Leaves; Plant Proteins; Signal Transduction; Species Specificity; Stress, Physiological; Time Factors | 2013 |
Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis.
Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies. Topics: Animals; Arabidopsis; Arabidopsis Proteins; Carboxylic Ester Hydrolases; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Isoleucine; Moths; Mutation; Oxylipins; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Signal Transduction | 2013 |
OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice.
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways. Topics: Animals; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Lepidoptera; Lipoxygenase; Oils, Volatile; Oryza; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plant Stems; Plants, Genetically Modified; Salicylic Acid; Seedlings; Signal Transduction; Trypsin Inhibitors; Up-Regulation; Wounds and Injuries | 2013 |
Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.
Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance. Topics: Aminobutyrates; Arabidopsis; Chromatin; Cyclopentanes; Disease Resistance; Ethylenes; Fungal Proteins; Gene Expression Regulation, Plant; Glucans; Histones; Models, Biological; Mutation; Oxylipins; Pectobacterium carotovorum; Plant Diseases; Plant Immunity; Plant Stomata; Receptors, Pattern Recognition; Salicylic Acid; Signal Transduction; Transcriptional Activation | 2013 |
CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection.
WRKY proteins form a large family of plant transcription factors implicated in the modulation of numerous biological processes, such as growth, development and responses to various environmental stresses. However, the roles of the majority WRKY family members, especially in non-model plants, remain poorly understood. We identified CaWRKY40 from pepper. Transient expression in onion epidermal cells showed that CaWRKY40 can be targeted to nuclei and activates expression of a W-box-containing reporter gene. CaWRKY40 transcripts are induced in pepper by Ralstonia solanacearum and heat shock. To assess roles of CaWRKY40 in plant stress responses we performed gain- and loss-of-function experiments. Overexpression of CaWRKY40 enhanced resistance to R. solanacearum and tolerance to heat shock in tobacco. In contrast, silencing of CaWRKY40 enhanced susceptibility to R. solanacearum and impaired thermotolerance in pepper. Consistent with its role in multiple stress responses, we found CaWRKY40 transcripts to be induced by signalling mechanisms mediated by the stress hormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Overexpression of CaWRKY40 in tobacco modified the expression of hypersensitive response (HR)-associated and pathogenesis-related genes. Collectively, our results suggest that CaWRKY40 orthologs are regulated by SA, JA and ET signalling and coordinate responses to R. solanacearum attacks and heat stress in pepper and tobacco. Topics: Capsicum; Cell Nucleus; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression; Gene Expression Regulation, Plant; Hot Temperature; Nicotiana; Onions; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Ralstonia solanacearum; Salicylic Acid; Seedlings; Sequence Analysis, DNA; Signal Transduction; Stress, Physiological; Transcription Factors | 2013 |
Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants.
Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields. Topics: Arabidopsis; Crops, Agricultural; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Bacterial; Genes, Plant; Genes, Reporter; Green Fluorescent Proteins; Host-Pathogen Interactions; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plants, Genetically Modified; Promoter Regions, Genetic; Regulatory Elements, Transcriptional; Salicylic Acid; Transgenes | 2013 |
Reducing jasmonic acid levels causes ein2 mutants to become ethylene responsive.
It has previously been shown that jasmonic acid affects the ethylene signaling pathway. EIN2 is a central component of ethylene signaling that is downstream of the receptors. EIN2 has previously been shown to be required for ethylene responses. We found that reducing jasmonic acid levels, either mutationally or chemically, caused ein2 ethylene-insensitive mutants to become ethylene responsive. This effect was not seen with the ethylene-insensitive etr1-1 mutants that affect receptor function. Based upon these results, we propose a model where jasmonic acid is inhibiting ethylene signal transduction down-stream of the ethylene receptors. This may involve an EIN2-independent pathway. Topics: Arabidopsis; Arabidopsis Proteins; Base Sequence; Cyclopentanes; DNA, Plant; Ethylenes; Genes, Plant; Mutation; Oxylipins; Pyrazoles; Receptors, Cell Surface; RNA, Messenger; RNA, Plant; Signal Transduction | 2013 |
The primary module in Norway spruce defence signalling against H. annosum s.l. seems to be jasmonate-mediated signalling without antagonism of salicylate-mediated signalling.
A key tree species for the forest industry in Europe is Norway spruce [Picea abies (L.) Karst.]. One of its major diseases is stem and butt rot caused by Heterobasidion parviporum (Fr.) Niemelä & Korhonen, which causes extensive revenue losses every year. In this study, we investigated the parallel induction of Norway spruce genes presumably associated with salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways previously observed in response to H. parviporum. Relative gene expression levels in bark samples of genes involved in the salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways after wounding and inoculation with either the saprotrophic biocontrol fungus Phlebiopsis gigantea or with H. parviporum were analysed with quantitative PCR at the site of the wound and at two distal locations from the wound/inoculation site to evaluate their roles in the induced defence response to H. parviporum in Norway spruce. Treatment of Norway spruce seedlings with methylsalicylate, methyljasmonate and inhibitors of the jasmonic acid/ethylene signalling pathway, as well as the Phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid were conducted to determine the responsiveness of genes characteristic of the different pathways to different hormonal stimuli. The data suggest that jasmonic acid-mediated signalling plays a central role in the induction of the genes analysed in this study irrespective of their responsiveness to salicylic acid. This may suggest that jasmonic acid-mediated signalling is the prioritized module in the Norway spruce defence signalling network against H. parviporum and that there seems to be no immediate antagonism between the modules in this interaction. Topics: Basidiomycota; Cyclopentanes; Ethylenes; Gene Expression; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Indans; Organophosphonates; Oxylipins; Phenylalanine Ammonia-Lyase; Picea; Plant Bark; Plant Diseases; Salicylates; Signal Transduction | 2013 |
A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence.
Phytophthora capsici causes devastating diseases on a broad range of plant species. To better understand the interaction with its host plants, knowledge obtained from a model pathosystem can be instrumental. Here, we describe the interaction between P. capsici and Arabidopsis and the exploitation of this novel pathosystem to assign metabolic pathways involved in defence against P. capsici. Inoculation assays on Arabidopsis accessions with different P. capsici isolates revealed interaction specificity among accession-isolate combinations. In a compatible interaction, appressorium-mediated penetration was followed by the formation of invasive hyphae, haustoria and sporangia in leaves and roots. In contrast, in an incompatible interaction, P. capsici infection elicited callose deposition, accumulation of active oxygen species and cell death, resulting in early pathogen encasement in leaves. Moreover, Arabidopsis mutants with defects in salicylic acid signalling, camalexin or indole glucosinolates biosynthesis pathways displayed severely compromised resistance to P. capsici. It is anticipated that this model pathosystem will facilitate the genetic dissection of complex traits responsible for resistance against P. capsici. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Glucosinolates; Host-Pathogen Interactions; Indoles; Oxylipins; Phenotype; Phytophthora; Plant Diseases; Salicylic Acid; Thiazoles | 2013 |
Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana.
Plant growth-promoting bacteria (PGPB) affect plant cellular processes in various ways. The endophytic bacterial strain Enterobacter radicincitans DSM 16656 has been shown to improve plant growth and yield in various agricultural and vegetable crops. Besides its ability to fix atmospheric nitrogen, produce phytohormones, and solubilize phosphate compounds, the strain is highly competitive against native endophytic organisms and colonizes the endorhizosphere in high numbers. Here, we show that E. radicincitans inoculation of the noncrop plant Arabidopsis thaliana promotes plant growth. Furthermore, high performance liquid chromatography (HPLC) analysis revealed that bacterial inoculation slightly decreased amounts of aliphatic glucosinolates in plant leaves in a fast-growing stage but increased these compounds in an older phase where growth is mostly completed. This effect seems to correlate with developmental stage and depends on the nitrogen requirement. Additionally, nitrogen deficiency studies with seedlings grown on medium containing different nitrogen concentrations suggest that plant nitrogen demand can influence the intensity of plant growth enhancement by E. radicincitans. This endophyte seems not to activate stress-inducible mitogen-activated protein kinases (MAPKs). Analyzing transcription of the defense-related genes PR1, PR2, PR5, and PDF1.2 by quantitative real time polymerase chain reaction (qPCR) revealed that E. radicincitans DSM 16656 is able to induce priming via salicylic acid (SA) or jasmonate (JA)/ethylene (ET) signaling pathways to protect plants against potential pathogen attack. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Endophytes; Enterobacter; Ethylenes; Gene Expression Regulation, Plant; Glucosinolates; Oxylipins; Plant Growth Regulators; Salicylic Acid | 2013 |
Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici.
Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). Both the ET and JASMONIC ACID INSENSITIVE1 (JAI1) receptor-dependent JA signalling pathways are necessary for susceptibility, while SA response promotes resistance to AAL infection. In addition, the role of JA in susceptibility to AAL is partly dependent on ET biosynthesis and perception, while the SA pathway enhances resistance to AAL and antagonizes the ET response. Based on these results, it is proposed that ET, JA, and SA each on their own can influence the susceptibility of tomato to AAL. Furthermore, the functions of JA and SA in susceptibility to the pathogen are correlated with the enhanced or decreased action of ET, respectively. This study has revealed the functional relationship among the three key hormone pathways in tomato defence against AAL. Topics: Alternaria; Cyclopentanes; Ethylenes; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Solanum lycopersicum | 2013 |
Foliar herbivory triggers local and long distance defense responses in maize.
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory. Topics: Animals; Biosynthetic Pathways; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Herbivory; Host-Parasite Interactions; Oligonucleotide Array Sequence Analysis; Organ Specificity; Oxylipins; Plant Diseases; Plant Leaves; Plant Roots; Plant Shoots; Signal Transduction; Spodoptera; Transcriptome; Zea mays | 2013 |
Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes.
The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato tubers. An increase in ABA and ABA metabolite content was observed 48h after wounding and remained elevated through 96h. Wounding induced dramatic increases in the expression of the ABA metabolic genes encoding zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and ABA-8'-hydroxylase. Although the patterns of wound-induced expression of individual genes varied, increased gene expression was observed within 3h of wounding and remained elevated through 96h. An apparent correlation between expression of the gene encoding ZEP and the increase in ABA content suggested that the wound-induced increase in ABA biosynthesis was regulated by both substrate availability and increased NCED activity. Suppression of wound-induced jasmonic acid accumulation by rinsing the wounded tissue with water did not inhibit the subsequent increase in ABA content. Exogenous ethylene completely suppressed the wound-induced increase in ABA content and dramatically reduced wound-induced up-regulation of ABA metabolic genes. This study is the first to identify the molecular bases for increased ABA accumulation following physical trauma in potato tubers and highlights the complex physiological interactions between various wound-induced hormones. Topics: Abscisic Acid; Cyclopentanes; Cytochrome P-450 Enzyme System; Dioxygenases; Ethylenes; Gene Expression Regulation, Plant; Metabolism; Oxidoreductases; Oxylipins; Plant Growth Regulators; Plant Proteins; Plant Tubers; Solanum tuberosum | 2013 |
Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.
Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance. Topics: Amino Acids, Cyclic; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hydroponics; Oxidative Stress; Oxylipins; Plants, Genetically Modified; Sodium Chloride; Tocopherols | 2013 |
Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana.
Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with the indirect plant defense induced by the other herbivore. However, little is understood about the mechanisms underlying such interference. Here, we address the effect of herbivory by the phloem-feeding whitefly Bemisia tabaci on the induced indirect defense of Arabidopsis thaliana plants to Plutella xylostella caterpillars, that is, the attraction of the parasitoid wasp Diadegma semiclausum. Assays with various Arabidopsis mutants reveal that B. tabaci infestation interferes with indirect plant defense induced by P. xylostella, and that intact jasmonic acid and ethylene signaling are required for such interference caused by B. tabaci. Chemical analysis of plant volatiles showed that the composition of the blend emitted in response to the caterpillars was significantly altered by co-infestation with whiteflies. Moreover, whitefly infestation also had a considerable effect on the transcriptomic response of the plant to the caterpillars. Understanding the mechanisms underlying a plant's responses to multiple attackers will be important for the development of crop protection strategies in a multi-attacker context. Topics: Animals; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hemiptera; Host-Parasite Interactions; Oxylipins; Signal Transduction | 2013 |
Defense gene expression is potentiated in transgenic barley expressing antifungal peptide Metchnikowin throughout powdery mildew challenge.
Transgenesis of antimicrobial peptides (AMPs) from different origins has emerged as an option for improvement of crop disease resistance since proof-of-concept for their activities against microbial phytopathogens is provided, persistently. Nevertheless, a more systematic approach based on knowledge of AMPs modes of action including elucidation of their cellular targets and possible impact on immune system considerably improves and diversifies the armory against harmful plant diseases. In present study, the impact of Metchnikowin (Mtk) expression in barley in terms of modulating different immune pathways was investigated. Monitoring of transcript abundance of different genes involved in key immune pathways of SAR, ISR, and redox milieu during interaction of Mtk barley with biotrophic Blumeria graminis f. sp. hordei (Bgh) demonstrated that several immune responses are modulated in Mtk transgenic plants. Present findings substantiate the higher activation of SAR pathway as well as ISR pathway in transgenic plants. Regarding susceptibility factors, nonetheless MLO gene is expressed more in Mtk plants and should lead to an increased cellular accessibility to Bgh, its impact is presumably overwhelmed by other mechanism(s) so that the plants show more resistance when challenging with Bgh. On the other hand, no obvious difference was observed between expression level of Bax inhibitor-1 (BI-1) in transgenic and wild type plants, which could be an indicative of its neutrality in resistance/susceptibility of transgenic plants to Bgh. The provided evidence on the involved pathways in Mtk-induced resistance improves our knowledge concerning impacts of AMPs expressed in diverse plant species on immune system of relevant transgenic plants. Topics: Animals; Antifungal Agents; Antimicrobial Cationic Peptides; Ascomycota; Cyclopentanes; Drosophila melanogaster; Drosophila Proteins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Hordeum; Oxidation-Reduction; Oxylipins; Peptides; Plant Diseases; Plant Leaves; Plants, Genetically Modified; Protein Transport; Salicylic Acid; Signal Transduction; Subcellular Fractions; Time Factors | 2012 |
Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f. sp. tritici using GeneChip.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease of wheat. The use of wheat cultivars resistant to powdery mildew provides an effective, economical, and environmentally friendly method to control the disease. Previously, we identified a dominant resistance gene, temporarily named Pmhym, from the wheat cultivar Hongyoumai. In order to screen differential transcripts related to Pmhym-mediated resistance, four F3 homozygous resistant and four susceptible progenies derived from the Hongyoumai/Yumai13 cross were selected to construct two different pools, respectively, representing an incompatible and compatible interaction with Bgt. Pre-inoculated control and the pathogen-inoculated treatments at 24 h post inoculation (hpi) were used. Three groups of differential genes were categorized from three comparisons as pre- and post-induced, respectively, in two interactions, and post-induced between incompatible and compatible interaction. It was found that salicylic acid (SA), jasmonate (JA), and ethylene (ET) signaling-related genes were differentially expressed, thus suggesting that they are involved in the defensive response against Bgt infection. In compatible interactions, the genes involved in the abscisic acid (ABA) signaling pathway might be inhibitory to the above-mentioned three pathways, resulting in a susceptible reaction. Genes involved in disease/defense, signal transduction, and reactive oxygen species (ROS) metabolism were up-regulated in incompatible interactions, implying a role in resistant response. The results of qRT-PCR analysis on several candidate genes were consistent in their expression patterns as revealed by microarray analysis. The differential expression analyses in the present study are good candidates for further elucidation of wheat defensive response to powdery mildew. Topics: Ascomycota; Crosses, Genetic; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Intracellular Signaling Peptides and Proteins; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Triticum | 2012 |
Characterization of the first specific Jasmonate biosynthetic pathway gene allene oxide synthase from Artemisia annua.
Allene oxide synthase (AOS) is the first committed step in the biosynthetic pathway of Jasmonate. In this study, a full-length cDNA of AOS gene (named as AaAOS) was cloned from Artemisia annua. The gene was 1891 bp in size containing an open reading frame (1581 bp) encoding 526 amino acids. Comparative and bioinformatic analysis revealed that the deduced protein of AaAOS was highly homologous to AOSs from other plant species. Phylogenetic analysis indicated that the protein of AaAOS belonged to the dicotyledonous group, which was consistent with the category of A. annua. Southern blot analysis revealed that it was a low-copy gene. Quantitative Real-time PCR (qRT-PCR) analysis showed that AaAOS mRNA accumulated most abundantly in leaves and flowers. The qRT-PCR analysis revealed that MeJA, ABA and ethylene treatments significantly enhanced AaAOS transcript expression. Topics: Acetates; Amino Acid Sequence; Artemisia annua; Base Sequence; Biosynthetic Pathways; Blotting, Southern; Cloning, Molecular; Computational Biology; Cyclopentanes; DNA Primers; DNA, Complementary; Ethylenes; Flowers; Gene Expression Regulation, Plant; Intramolecular Oxidoreductases; Molecular Sequence Data; Open Reading Frames; Oxylipins; Plant Leaves; Real-Time Polymerase Chain Reaction; Sequence Analysis, DNA; Sequence Homology | 2012 |
Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response.
Our recent work demonstrated that chitin treatment modulated the expression of 118 transcription factor (TF) genes in Arabidopsis. To investigate the potential roles of these TF in chitin signaling and plant defense, we initiated an interaction study among these TF proteins, as well as two chitin-activated mitogen-activated protein kinases (MPK3 and MPK6), using a yeast two-hybrid system. This study revealed interactions among the following proteins: three ethylene-responsive element-binding factors (ERF), five WRKY transcription factors, one scarecrow-like (SCL), and the two MPK, in addition to many other interactions, reflecting a complex TF interaction network. Most of these interactions were subsequently validated by other methods, such as pull-down and in planta bimolecular fluorescence complementation assays. The key node ERF5 was shown to interact with multiple proteins in the network, such as ERF6, ERF8, and SCL13, as well as MPK3 and MPK6. Interestingly, ERF5 appeared to negatively regulate chitin signaling and plant defense against the fungal pathogen Alternaria brassicicola and positively regulate salicylic acid signaling and plant defense against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Therefore, ERF5 may play an important role in plant innate immunity, likely through coordinating chitin and other defense pathways in plants in response to different pathogens. Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Chitin; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Hypocotyl; Immunity, Innate; Mitogen-Activated Protein Kinases; Mutation; Oxylipins; Phosphorylation; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plants, Genetically Modified; Protein Interaction Mapping; Pseudomonas syringae; Salicylic Acid; Seedlings; Signal Transduction; Solanum lycopersicum; Time Factors; Transcription Factors; Two-Hybrid System Techniques | 2012 |
Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate.
Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Hot Temperature; Oxylipins; Plant Growth Regulators; Plant Leaves; Salicylates; Signal Transduction; Tropism | 2012 |
Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens.
• Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. • We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β-aminobutryric acid (BABA). • Plants grown from JA-treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long-lasting, with significant increases in resistance sustained in plants grown from treated seed for at least 8 wk, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. • Long-term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation. Topics: Abscisic Acid; Aminobutyrates; Animals; Aphids; Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Herbivory; Manduca; Oxylipins; Plant Diseases; Seeds; Signal Transduction; Solanum lycopersicum; Tetranychidae; Transcription, Genetic | 2012 |
Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif.
Glutaredoxins are small heat-stable oxidoreductases that transfer electrons from glutathione (GSH) to oxidized cysteine residues, thereby contributing to protein integrity and regulation. In Arabidopsis thaliana, floral glutaredoxins ROXY1 and ROXY2 and pathogen-induced ROXY19/GRX480 interact with bZIP transcription factors of the TGACG (TGA) motif-binding family. ROXY1, ROXY2, and TGA factors PERIANTHIA, TGA9, and TGA10 play essential roles in floral development. In contrast, ectopically expressed ROXY19/GRX480 negatively regulates expression of jasmonic acid (JA)/ethylene (ET)-induced defense genes through an unknown mechanism that requires clade II transcription factors TGA2, TGA5, and/or TGA6. Here, we report that at least 17 of the 21 land plant-specific glutaredoxins encoded in the Arabidopsis genome interact with TGA2 in a yeast-two-hybrid system. To investigate their capacity to interfere with the expression of JA/ET-induced genes, we developed a transient expression system. Activation of the ORA59 (OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF-domain protein 59) promoter by transcription factor EIN3 (ETHYLENE INSENSITVE 3) was suppressed by co-expressed ROXY19/GRX480. Suppression depended on the L**LL motif in the C-terminus of ROXY19/GRX480. This putative protein interaction domain was recently described as being essential for the TGA/ROXY interaction. Ten of the 17 tested ROXY proteins suppressed ORA59 promoter activity, which correlated with the presence of the C-terminal ALWL motif, which is essential for ROXY1 function in flower development. ROXY19/GRX480-mediated repression depended on the GSH binding site, suggesting that redox modification of either TGA factors or as yet unknown target proteins is important for the suppression of ORA59 promoter activity. Topics: Amino Acid Motifs; Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Glutaredoxins; Glutathione; Molecular Sequence Data; Nucleotide Motifs; Oxylipins; Promoter Regions, Genetic; Protein Binding; Transcription Factors | 2012 |
Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress.
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type. Topics: Antioxidants; Arabidopsis; Arabidopsis Proteins; Biomass; Chlorophyll; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Lipid Peroxidation; Malondialdehyde; Mutation; Nuclear Proteins; Oxidative Stress; Oxylipins; Plant Growth Regulators; Plant Leaves; Seedlings; Signal Transduction; Sodium Chloride; Transcription Factors; Water | 2012 |
The broad-leaf herbicide 2,4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp.
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest. Topics: 2,4-Dichlorophenoxyacetic Acid; Animals; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Herbicides; Herbivory; High-Throughput Screening Assays; Insecticide Resistance; Mitogen-Activated Protein Kinases; Oryza; Oxylipins; Pest Control; Plant Leaves; Plant Proteins; RNA, Messenger; Salicylic Acid; Trypsin Inhibitors; Volatile Organic Compounds; Wasps | 2012 |
Hormonal changes during flower development in floral tissues of Lilium.
Much effort has been focussed on better understanding the key signals that modulate floral senescence. Although ethylene is one of the most important regulators of floral senescence in several species, Lilium flowers show low sensitivity to ethylene; thus their senescence may be regulated by other hormones. In this study we have examined how (1) endogenous levels of hormones in various floral tissues (outer and inner tepals, androecium and gynoecium) vary throughout flower development, (2) endogenous levels of hormones in such tissues change in cut versus intact flowers at anthesis, and (3) spray applications of abscisic acid and pyrabactin alter flower longevity. Results show that floral tissues behave differently in their hormonal changes during flower development. Cytokinin and auxin levels mostly increased in tepals prior to anthesis and decreased later during senescence. In contrast, levels of abscisic acid increased during senescence, but only in outer tepals and the gynoecium, and during the latest stages. In addition, cut flowers at anthesis differed from intact flowers in the levels of abscisic acid and auxins in outer tepals, salicylic acid in inner tepals, cytokinins, gibberellins and jasmonic acid in the androecium, and abscisic acid and salicylic acid in the gynoecium, thus showing a clear differential response between floral tissues. Furthermore, spray applications of abscisic acid and pyrabactin in combination accelerated the latest stages of tepal senescence, yet only when flower senescence was delayed with Promalin. It is concluded that (1) floral tissues differentially respond in their endogenous variations of hormones during flower development, (2) cut flowers have drastic changes in the hormonal balance not only of outer and inner tepals but also of androecium and gynoecium, and (3) abscisic acid may accelerate the progression of tepal senescence in Lilium. Topics: Abscisic Acid; Cyclopentanes; Cytokinins; Ethylenes; Flowers; Gene Expression Regulation, Plant; Gibberellins; Indoleacetic Acids; Lilium; Oxylipins; Plant Growth Regulators; Reproduction; Salicylic Acid; Time Factors | 2012 |
Isolation and functional characterization of a transcription factor VpNAC1 from Chinese wild Vitis pseudoreticulata.
NAC (for NAM, ATAF1, 2, and CUC2) family genes encode plant-specific transcription factors that play important roles in plant development regulation and in abiotic and biotic stresses. However, the function of NAC genes in grapevines is not clear. A novel NAC transcription factor, designated as VpNAC1, was isolated from Chinese wild Vitis pseudoreticulata. It belongs to the TERN subgroup and is a nuclear-targeting protein and functions as a transcriptional activator. Moreover, VpNAC1 was induced by the fungus Erysiphe necator and the exogenous hormones, particularly salicylic acid, methyl jasmonate and ethylene. Over-expression of VpNAC1 in tobacco plants enhanced their resistance to Erysiphe cichoracearum and Phytophthora parasitica var. nicotianae Tucker. These results suggest that VpNAC1 acts as a positive regulator in biotic stresses. Topics: Ascomycota; China; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Nuclear Localization Signals; Oxylipins; Phytophthora; Plant Proteins; Salicylic Acid; Stress, Physiological; Trans-Activators; Vitis | 2012 |
Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis.
Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; DNA-Binding Proteins; Dose-Response Relationship, Drug; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mitogen-Activated Protein Kinases; Oomycetes; Oxylipins; Phosphites; Phosphorylation; Plant Diseases; Plant Immunity; Salicylic Acid; Scopoletin; Signal Transduction; Thiazoles | 2012 |
Transcriptional analysis of Arabidopsis thaliana response to lima bean volatiles.
Exposure of plants to herbivore-induced plant volatiles (HIPVs) alters their resistance to herbivores. However, the whole-genome transcriptional responses of treated plants remain unknown, and the signal pathways that produce HIPVs are also unclear.. Time course patterns of the gene expression of Arabidopsis thaliana exposed to Lima bean volatiles were examined using Affymetrix ATH1 genome arrays. Results showed that A. thaliana received and responded to leafminer-induced volatiles from Lima beans through up-regulation of genes related to the ethylene (ET) and jasmonic acid pathways. Time course analysis revealed strong and partly qualitative differences in the responses between exposure at 24 and that at 48 h. Further experiments using either A. thaliana ET mutant ein2-1 or A. thaliana jasmonic acid mutant coi1-2 indicated that both pathways are involved in the volatile response process but that the ET pathway is indispensable for detecting volatiles. Moreover, transcriptional comparisons showed that plant responses to larval feeding do not merely magnify the volatile response process. Finally, (Z)-3-hexen-ol, ocimene, (3E)-4,8-dimethyl-1,3,7-nonatriene, and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene triggered responses in A. thaliana similar to those induced by the entire suite of Lima bean volatiles after 24 and 48 h.. This study shows that the transcriptional responses of plants to HIPVs become stronger as treatment time increases and that ET signals are critical during this process. Topics: Alkenes; Animals; Arabidopsis; Cyclopentanes; Diptera; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Hexanols; Larva; Oligonucleotide Array Sequence Analysis; Oxylipins; Phaseolus; Plant Extracts; Signal Transduction; Terpenes; Time Factors; Transcription, Genetic; Volatile Organic Compounds | 2012 |
ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis.
The ethylene response factor (ERF) family in Arabidopsis thaliana comprises 122 members in 12 groups, yet the biological functions of the majority remain unknown. Of the group IX ERFs, the IXc subgroup has been studied the most, and includes ERF1, ERF14 and ORA59, which play roles in plant innate immunity. Here we investigate the biological functions of two members of the less studied IXb subgroup: ERF5 and ERF6. In order to identify potential targets of these transcription factors, microarray analyses were performed on plants constitutively expressing either ERF5 or ERF6. Expression of defense genes, JA/Et-responsive genes and genes containing the GCC box promoter motif were significantly upregulated in both ERF5 and ERF6 transgenic plants, suggesting that ERF5 and ERF6 may act as positive regulators of JA-mediated defense and potentially overlap in their function. Since defense against necrotrophic pathogens is generally mediated through JA/Et-signalling, resistance against the fungal necrotroph Botrytis cinerea was examined. Constitutive expression of ERF5 or ERF6 resulted in significantly increased resistance. Although no significant difference in susceptibility to B. cinerea was observed in either erf5 or erf6 mutants, the erf5 erf6 double mutant showed a significant increase in susceptibility, which was likely due to compromised JA-mediated gene expression, since JA-induced gene expression was reduced in the double mutant. Taken together these data suggest that ERF5 and ERF6 play positive but redundant roles in defense against B. cinerea. Since mutual antagonism between JA/Et and salicylic acid (SA) signalling is well known, the UV-C inducibility of an SA-inducible gene, PR-1, was examined. Reduced inducibilty in both ERF5 and ERF6 constitutive overexepressors was consistent with suppression of SA-mediated signalling, as was an increased susceptibility to avirulent Pseudomonas syringae. These data suggest that ERF5 and ERF6 may also play a role in the antagonistic crosstalk between the JA/Et and SA signalling pathways. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Promoter Regions, Genetic; Pseudomonas syringae; Repressor Proteins; Salicylic Acid; Signal Transduction; Transcription Factors; Ultraviolet Rays; Up-Regulation | 2012 |
Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens.
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Hemoglobins; Host-Pathogen Interactions; Mutation; Nitric Oxide; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid | 2012 |
Expressed sequence tags in cultivated peanut (Arachis hypogaea): discovery of genes in seed development and response to Ralstonia solanacearum challenge.
Although an important oil crop, peanut has only 162,030 expressed sequence tags (ESTs) publicly available, 86,943 of which are from cultivated plants. More ESTs from cultivated peanuts are needed for isolation of stress-resistant, tissue-specific and developmentally important genes. Here, we generated 63,234 ESTs from our 5 constructed peanut cDNA libraries of Ralstonia solanacearum challenged roots, R. solanacearum challenged leaves, and unchallenged cultured peanut roots, leaves and developing seeds. Among these ESTs, there were 14,547 unique sequences with 7,961 tentative consensus sequences and 6,586 singletons. Putative functions for 47.8 % of the sequences were identified, including transcription factors, tissue-specific genes, genes involved in fatty acid biosynthesis and oil formation regulation, and resistance gene analogue genes. Additionally, differentially expressed genes, including those involved in ethylene and jasmonic acid signal transduction pathways, from both peanut leaves and roots, were identified in R. solanacearum challenged samples. This large expression dataset from different peanut tissues will be a valuable source for marker development and gene expression analysis. It will also be helpful for finding candidate genes for fatty acid synthesis and oil formation regulation as well as for studying mechanisms of interactions between the peanut host and R. solanacearum pathogen. Topics: Arachis; Consensus Sequence; Crops, Agricultural; Cyclopentanes; Disease Resistance; Ethylenes; Expressed Sequence Tags; Fatty Acids; Gene Expression Regulation, Plant; Gene Library; Genes, Plant; Genes, Regulator; Oxylipins; Plant Diseases; Plant Leaves; Plant Oils; Plant Proteins; Plant Roots; Ralstonia solanacearum; Seeds; Signal Transduction; Transcription Factors | 2012 |
Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat?
Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat).. Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3.. Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. Topics: Carboxylic Ester Hydrolases; Carrier Proteins; Cyclopentanes; Defensins; Ethylenes; Fusarium; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Mycotoxins; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Plant Immunity; Plant Proteins; Signal Transduction; Thionins; Triticum; Virulence | 2012 |
Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection.
The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus.. As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST) to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO) analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling.. We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack. Topics: Abscisic Acid; Base Sequence; Colletotrichum; Computational Biology; Cyclopentanes; Cytokinins; Ethylenes; Expressed Sequence Tags; Gene Expression Regulation, Plant; Gibberellins; Immunity, Innate; Models, Immunological; Molecular Sequence Data; Oxylipins; Phaseolus; Plant Diseases; Plant Growth Regulators; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, DNA; Transcriptome | 2012 |
Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates.
One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits. Topics: Carotenoids; Cyclopentanes; Ethylenes; Fruit; Lycopene; Oxylipins; Plant Growth Regulators; Plant Proteins; Solanum lycopersicum | 2012 |
Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease.
Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism. Topics: Brachypodium; Cell Nucleus; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Models, Biological; Mosaic Viruses; Oxylipins; Phylogeny; Plant Diseases; Plant Proteins; Salicylic Acid; Satellite Viruses; Sequence Analysis, Protein; Signal Transduction; Time Factors; Transcription Factors; Transcriptome | 2012 |
Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens. Topics: Arabidopsis; Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Glycolipids; Models, Biological; Mutation; Oxylipins; Peronospora; Plant Diseases; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Spores, Bacterial; Spores, Fungal | 2012 |
Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction.
Studies involving plant-nematode interactions provide an opportunity to unravel plant defense signaling in root tissues. In this study, we have characterized the roles of salicylate (SA), jasmonate (JA), ethylene (ET) and abscisic acid (ABA) in plant defense against the migratory nematode Hirschmanniella oryzae in the monocot model plant rice (Oryza sativa). Experiments with exogenous hormone applications, biosynthesis inhibition and mutant/transgenic lines were executed to test the effect on H. oryzae parasitism in rice roots. Our results demonstrate that an intact ET, JA and SA biosynthesis pathway is a prerequisite for defense against H. oryzae. By contrast, exogenous ABA treatment drastically compromised the rice defense towards this nematode. Gene expression analyses using quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrate that the disease-inducing effect of ABA is likely to be the result of an antagonistic interaction between this hormone and the SA/JA/ET-dependent basal defense system. Collectively, in rice defense against H. oryzae, at least three pathways, namely SA, JA and ET, are important, while ABA plays a negative role in defense. Our results suggest that the balance of ABA and SA/JA/ET signaling is an important determinant for the outcome of the rice-H. oryzae interaction. Topics: Abscisic Acid; Acetates; Animals; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Host-Parasite Interactions; Nematoda; Oryza; Oxylipins; Plant Diseases; Plant Roots; Plant Shoots; Plants, Genetically Modified; Pyridones; Reverse Transcriptase Polymerase Chain Reaction; RNA, Plant; Salicylic Acid; Signal Transduction; Transcription, Genetic; Transcriptome | 2012 |
Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.
Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. Topics: Abscisic Acid; Arabidopsis; Ascomycota; Cell Wall; Cluster Analysis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Models, Biological; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Spectroscopy, Fourier Transform Infrared; Stress, Physiological | 2012 |
The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways.
Systemic acquired resistance (SAR) is a long-lasting plant immunity against a broad spectrum of pathogens. Biological induction of SAR requires the signal molecule salicylic acid (SA) and involves profound transcriptional changes that are largely controlled by the transcription coactivator nonexpressor of pathogenesis-related genes1 (NPR1). However, it is unclear how SAR signals are transduced from the NPR1 signaling node to the general transcription machinery. Here, we report that the Arabidopsis thaliana Mediator subunit16 (MED16) is an essential positive regulator of SAR. Mutations in MED16 reduced NPR1 protein levels and completely compromised biological induction of SAR. These mutations also significantly suppressed SA-induced defense responses, altered the transcriptional changes induced by the avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000/avrRpt2, and rendered plants susceptible to both Pst DC3000/avrRpt2 and Pst DC3000. In addition, mutations in MED16 blocked the induction of several jasmonic acid (JA)/ethylene (ET)-responsive genes and compromised resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. The Mediator complex acts as a bridge between specific transcriptional activators and the RNA polymerase II transcription machinery; therefore, our data suggest that MED16 may be a signaling component in the gap between the NPR1 signaling node and the general transcription machinery and may relay signals from both the SA and the JA/ET pathways. Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oxylipins; Plant Immunity; Pseudomonas syringae; Signal Transduction; Trans-Activators | 2012 |
The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice.
Leaf senescence is a natural age-dependent process that is induced prematurely by various environmental stresses. Typical alterations during leaf senescence include breakdown of chlorophyll, a shift to catabolism of energy reserves, and induction of senescence-associated genes, all of which can occur during submergence, drought, and constant darkness. Here, we evaluated the influence of the submergence tolerance regulator, SUBMERGENCE1A (SUB1A), in the acclimation responses during leaf senescence caused by prolonged darkness in rice (Oryza sativa). SUB1A messenger RNA was highly induced by prolonged darkness in a near-isogenic line containing SUB1A. Genotypes with conditional and ectopic overexpression of SUB1A significantly delayed loss of leaf color and enhanced recovery from dark stress. Physiological analysis revealed that SUB1A postpones dark-induced senescence through the maintenance of chlorophyll and carbohydrate reserves in photosynthetic tissue. This delay allowed leaves of SUB1A genotypes to recover photosynthetic activity more quickly upon reexposure to light. SUB1A also restricted the transcript accumulation of representative senescence-associated genes. Jasmonate and salicylic acid are positive regulators of leaf senescence, but ectopic overexpression of SUB1A dampened responsiveness to both hormones in the context of senescence. We found that ethylene accelerated senescence stimulated by darkness and jasmonate, although SUB1A significantly restrained dark-induced ethylene accumulation. Overall, SUB1A genotypes displayed altered responses to prolonged darkness by limiting ethylene production and responsiveness to jasmonate and salicylic acid, thereby dampening the breakdown of chlorophyll, carbohydrates, and the accumulation of senescence-associated messenger RNAs. A delay of leaf senescence conferred by SUB1A can contribute to the enhancement of tolerance to submergence, drought, and oxidative stress. Topics: Adaptation, Physiological; beta-Galactosidase; Carbohydrate Metabolism; Chlorophyll; Cyclopentanes; Darkness; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Genetic Loci; Oryza; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; RNA, Messenger; Salicylic Acid; Water | 2012 |
OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis.
Rice OsEDR1 is a sequence ortholog of Arabidopsis EDR1. However, its molecular function is unknown. We show here that OsEDR1-suppressing/knockout (KO) plants, which developed spontaneous lesions on the leaves, have enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo) causing bacterial blight disease. This resistance was associated with increased accumulation of salicylic acid (SA) and jasmonic acid (JA), induced expression of SA- and JA-related genes and suppressed accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), the direct precursor of ethylene, and expression of ethylene-related genes. OsEDR1-KO plants also showed suppressed production of ethylene. Knockout of OsEDR1 suppressed the ACC synthase (ACS) gene family, which encodes the rate-limiting enzymes of ethylene biosynthesis by catalysing the formation of ACC. The lesion phenotype and enhanced bacterial resistance of the OsEDR1-KO plants was partly complemented by the treatment with ACC. ACC treatment was associated with decreased SA and JA biosynthesis in OsEDR1-KO plants. In contrast, aminoethoxyvinylglycine, the inhibitor of ethylene biosynthesis, promoted expression of SA and JA synthesis-related genes in OsEDR1-KO plants. These results suggest that ethylene is a negative signalling molecule in rice bacterial resistance. In the rice-Xoo interaction, OsEDR1 transcriptionally promotes the synthesis of ethylene that, in turn, suppresses SA- and JA-associated defence signalling. Topics: Amino Acids, Cyclic; Anti-Infective Agents; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Glycine; Magnaporthe; Oryza; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Proteins; Plants, Genetically Modified; RNA Interference; Salicylic Acid; Sequence Deletion; Signal Transduction; Transcription Factors; Xanthomonas | 2011 |
Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
Soil drench treatments with hexanoic acid can effectively protect Arabidopsis plants against Botrytis cinerea through a mechanism based on a stronger and faster accumulation of JA-dependent defenses. Plants impaired in ethylene, salicylic acid, abscisic acid or glutathion pathways showed intact protection by hexanoic acid upon B. cinerea infection. Accordingly, no significant changes in the SA marker gene PR-1 in either the SA or ABA hormone balance were observed in the infected and treated plants. In contrast, the JA signaling pathway showed dramatic changes after hexanoic acid treatment, mainly when the pathogen was present. The impaired JA mutants, jin1-2 and jar1, were unable to display hexanoic acid priming against the necrotroph. In addition, hexanoic acid-treated plants infected with B. cinerea showed priming in the expression of the PDF1.2, PR-4 and VSP1 genes implicated in the JA pathways. Moreover, JA and OPDA levels were primed at early stages by hexanoic acid. Treatments also stimulated increased callose accumulation in response to the pathogen. Although callose accumulation has proved an effective IR mechanism against B. cinerea, it is apparently not essential to express hexanoic acid-induced resistance (HxAc-IR) because the mutant pmr4.1 (callose synthesis defective mutant) is protected by treatment. We recently described how hexanoic acid treatments can protect tomato plants against B. cinerea by stimulating ABA-dependent callose deposition and by priming OPDA and JA-Ile production. We clearly demonstrate here that Hx-IR is a dependent plant species, since this acid protects Arabidopsis plants against the same necrotroph by priming JA-dependent defenses without enhancing callose accumulation. Topics: Abscisic Acid; Alternaria; Anti-Infective Agents; Arabidopsis; Arabidopsis Proteins; Botrytis; Caproates; Cyclopentanes; Defensins; Endopeptidases; Ethylenes; Gene Expression Regulation, Plant; Glucans; Glutathione; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction | 2011 |
Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana.
Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora. Topics: Anti-Infective Agents; Arabidopsis; Arabidopsis Proteins; Bacteria; Biota; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Mutation; Nicotiana; Oxylipins; Plant Growth Regulators; Plant Immunity; Pseudomonas; Rhizosphere; Salicylic Acid; Signal Transduction; Thiadiazoles | 2011 |
The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection. Topics: Arabidopsis; Bacillus cereus; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Glucans; Hydrogen Peroxide; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Pseudomonas syringae; Salicylic Acid; Signal Transduction | 2011 |
ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance.
ZmPep1 is a bioactive peptide encoded by a previously uncharacterized maize (Zea mays) gene, ZmPROPEP1. ZmPROPEP1 was identified by sequence similarity as an ortholog of the Arabidopsis (Arabidopsis thaliana) AtPROPEP1 gene, which encodes the precursor protein of elicitor peptide 1 (AtPep1). Together with its receptors, AtPEPR1 and AtPEPR2, AtPep1 functions to activate and amplify innate immune responses in Arabidopsis and enhances resistance to both Pythium irregulare and Pseudomonas syringae. Candidate orthologs to the AtPROPEP1 gene have been identified from a variety of crop species; however, prior to this study, activities of the respective peptides encoded by these orthologs were unknown. Expression of the ZmPROPEP1 gene is induced by fungal infection and treatment with jasmonic acid or ZmPep1. ZmPep1 activates de novo synthesis of the hormones jasmonic acid and ethylene and induces the expression of genes encoding the defense proteins endochitinase A, PR-4, PRms, and SerPIN. ZmPep1 also stimulates the expression of Benzoxazineless1, a gene required for the biosynthesis of benzoxazinoid defenses, and the accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside in leaves. To ascertain whether ZmPep1-induced defenses affect resistance, maize plants were pretreated with the peptide prior to infection with fungal pathogens. Based on cell death and lesion severity, ZmPep1 pretreatment was found to enhance resistance to both southern leaf blight and anthracnose stalk rot caused by Cochliobolis heterostrophus and Colletotrichum graminicola, respectively. We present evidence that peptides belonging to the Pep family have a conserved function across plant species as endogenous regulators of innate immunity and may have potential for enhancing disease resistance in crops. Topics: Amino Acid Sequence; Arabidopsis; Ascomycota; Benzoxazines; Colletotrichum; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Immunity, Innate; Indoles; Molecular Sequence Data; ortho-Aminobenzoates; Oxylipins; Peptides; Plant Diseases; Plant Proteins; Sequence Homology, Amino Acid; Signal Transduction; Transcription, Genetic; Zea mays | 2011 |
Gene expression analysis of wounding-induced root-to-shoot communication in Arabidopsis thaliana.
Root-to-shoot communication plays an important role in the adaptation to environmental stress. In this study, we established a model system for root-to-shoot signalling to observe global gene expression in Arabidopsis thaliana. The roots of Arabidopsis seedlings were wounded and the expression in the shoots of 68 and 5 genes was up-regulated threefold at 30 min and 6 h post-injury, respectively. These genes were designated early and late Root-to-Shoot responsive (RtS) genes, respectively. Many of the early RtS genes were found to encode transcription factors such as AtERFs, whereas others were associated with jasmonic acid (JA) and ethylene (ET). Some of the late RtS genes were shown to be regulated by 12-oxo-phytodienoic acid (OPDA). In fact, elevated levels of JA and OPDA were detected in the shoots of seedlings 30 min and 6 h, respectively, after wounding of the roots. A mutant analysis revealed that JA and ET are involved in the expression of the early RtS genes. Thus, root-to-shoot communication for many RtS genes is associated with the systemic production of JA, OPDA and possibly ET. Topics: Arabidopsis; Cyclopentanes; Dehydration; Ethylenes; Fatty Acids, Unsaturated; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Mutation; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Roots; Plant Shoots; RNA, Plant; Signal Transduction; Stress, Physiological; Transcription Factors | 2011 |
Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis.
Plant defense against microbial pathogens depends on the action of several endogenously produced hormones, including jasmonic acid (JA) and ethylene (ET). In defense against necrotrophic pathogens, the JA and ET signaling pathways synergize to activate a specific set of defense genes including PLANT DEFENSIN1.2 (PDF1.2). The APETALA2/Ethylene Response Factor (AP2/ERF)-domain transcription factor ORA59 acts as the integrator of the JA and ET signaling pathways and is the key regulator of JA- and ET-responsive PDF1.2 expression. The present study was aimed at the identification of elements in the PDF1.2 promoter conferring the synergistic response to JA/ET and interacting with ORA59. We show that the PDF1.2 promoter was activated synergistically by JA and the ET-releasing agent ethephon due to the activity of two GCC boxes. ORA59 bound in vitro to these GCC boxes and trans-activated the PDF1.2 promoter in transient assays via these two boxes. Using the chromatin immunoprecipitation technique we were able to show that ORA59 bound the PDF1.2 promoter in vivo. Finally, we show that a tetramer of a single GCC box conferred JA/ethephon-responsive expression, demonstrating that the JA and ET signaling pathways converge to a single type of GCC box. Therefore ORA59 and two functionally equivalent GCC box binding sites form the module that enables the PDF1.2 gene to respond synergistically to simultaneous activation of the JA and ET signaling pathways. Topics: Arabidopsis; Arabidopsis Proteins; Base Sequence; Binding Sites; Cyclopentanes; Defensins; DNA, Plant; Ethylenes; Genes, Plant; Oxylipins; Plant Diseases; Plants, Genetically Modified; Promoter Regions, Genetic; Signal Transduction; Transcription Factors; Transcriptional Activation | 2011 |
Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction.
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage. Topics: Ascomycota; Cyclopentanes; Ethylenes; Expressed Sequence Tags; Fungal Proteins; Gene Library; Genes, Plant; Host-Pathogen Interactions; Musa; Nucleic Acid Hybridization; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sequence Analysis, DNA; Signal Transduction; Time Factors; UTP-Glucose-1-Phosphate Uridylyltransferase | 2011 |
Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress.
The current study was conducted in order to investigate the short-term effects (6, 12, and 24 h) of silicon (Si) on the endogenous hormonal composition of rice (Oryza sativa L. cv. Dongjin-beyo), with and without wounding stress. Si applied in different concentrations (0.5, 1.0, and 2.0 mM) significantly promoted shoot length, plant biomass, and chlorophyll content of rice plants. Plants treated with different concentrations of sole Si for 6, 12, and 24 h had higher endogenous jasmonic acid contents than control. However, a combined application of wounding stress and Si induced a significantly small quantity of endogenous jasmonic acid as compared with control. On the contrary, endogenous salicylic acid level was significantly higher in sole Si-treated plants, while after wounding stress, a similar trend was observed yet again. After 6, 12, and 24 h of Si applications, with and without wounding stress, ethylene levels were significantly lower in comparison to their respective controls. The findings of the present study perpetrate the beneficial role of Si on the growth and development of rice plant by relieving physical injury and stress. Si also affects endogenous jasmonic acid and ethylene levels, while an inverse correlation exists between jasmonic acid and salicylic acid under wounding stress conditions. Topics: Chlorophyll; Chromatography, High Pressure Liquid; Cyclopentanes; Ethylenes; Gas Chromatography-Mass Spectrometry; Oryza; Oxylipins; Plant Growth Regulators; Salicylic Acid; Silicates; Solid Phase Extraction; Spectrometry, Fluorescence; Stress, Physiological | 2011 |
Gene expression profiling in wounded and systemic leaves of Fagus sylvatica reveals up-regulation of ethylene and jasmonic acid signalling.
Wounding is a crucial threat to plants because of the physical damage caused and the possible entry of pathogens. Little is known about the wound reaction in forest trees. Therefore, leaves of young beech trees were wounded and the transcriptional response of wounded leaves and leaves directly above and below was analysed. A total of 123 genes exhibited significant regulation. The magnitude of regulation was slightly weaker in the downward leaves but the regulation pattern resembles that of the local and upward reactions. Thus, the signal was transduced in both vertical directions. Genes exhibiting major regulation lacked functional assignment or belonged to signalling, transcription and defence categories. Signalling included activation of transcripts in the calcium and ethylene pathways. There was also evidence for activation of jasmonic acid signalling, but no activation of jasmonic acid-responsive PR (pathogenesis-related) genes was observed. Moreover, repression of salicylic acid responsive defence was measured. Metabolic changes included induction of a core gene of the phenylpropanoid pathway, while energy metabolism exhibited down-regulation. These results support the conclusion that young beech trees might give up leaves and/or reduce leaf energy content after an attack so as to deprive a putative herbivore of a nutrient supply, instead of investing much energy in leaf defence. Topics: Cyclopentanes; Ethylenes; Fagus; Gene Expression Profiling; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Signal Transduction; Transcriptional Activation; Trees; Up-Regulation | 2011 |
Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways.
Fusarium species cause serious diseases in cereal staple food crops such as wheat and maize. Currently, the mechanisms underlying resistance to Fusarium-caused diseases are still largely unknown. In the present study, we employed a combined proteomic and transcriptomic approach to investigate wheat genes responding to F. graminearum infection that causes Fusarium head blight (FHB). We found a total of 163 genes and 37 proteins that were induced by infection. These genes and proteins were associated with signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA), ethylene (ET), calcium ions, phosphatidic acid (PA), as well as with reactive oxygen species (ROS) production and scavenging, antimicrobial compound synthesis, detoxification, and cell wall fortification. We compared the time-course expression profiles between FHB-resistant Wangshuibai plants and susceptible Meh0106 mutant plants of a selected set of genes that are critical to the plants' resistance and defense reactions. A biphasic phenomenon was observed during the first 24 h after inoculation (hai) in the resistant plants. The SA and Ca(2+) signaling pathways were activated within 6 hai followed by the JA mediated defense signaling activated around 12 hai. ET signaling was activated between these two phases. Genes for PA and ROS synthesis were induced during the SA and JA phases, respectively. The delayed activation of the SA defense pathway in the mutant was associated with its susceptibility. After F. graminearum infection, the endogenous contents of SA and JA in Wangshuibai and the mutant changed in a manner similar to the investigated genes corresponding to the individual pathways. A few genes for resistance-related cell modification and phytoalexin production were also identified. This study provided important clues for designing strategies to curb diseases caused by Fusarium. Topics: Calcium; Cyclopentanes; Edible Grain; Electrophoresis, Gel, Two-Dimensional; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Oxylipins; Phosphatidic Acids; Plant Diseases; Plant Proteins; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2011 |
Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis.
How rice defends itself against pathogen infection is well documented, but little is known about how it defends itself against herbivore attack. We measured changes in the transcriptome and chemical profile of rice when the plant is infested by the striped stem borer (SSB) Chilo suppressalis. Infestation by SSBs resulted in changes in the expression levels of 4545 rice genes; this number accounts for about 8% of the genome and is made up of 18 functional groups with broad functions. The largest group comprised genes involved in metabolism, followed by cellular transport, transcription and cellular signaling. Infestation by SSBs modulated many genes responsible for the biosynthesis of plant hormones and plant signaling. Jasmonic acid (JA), salicylic acid (SA) and ethylene were the major hormones that shaped the SSB-induced defence responses of rice. Many secondary signal transduction components, such as those involved in Ca²⁺ signaling and G-protein signaling, receptor and non-receptor protein kinases, and transcription factors were involved in the SSB-induced responses of rice. Photosynthesis and ATP synthesis from photophosphorylation were restricted by SSB feeding. In addition, SSB infestation induced the accumulation of defence compounds, including trypsin proteinase inhibitors (TrypPIs) and volatile organic compounds. These results demonstrate that SSB-induced defences required rice to reconfigure a wide variety of its metabolic, physiological and biochemical processes. Topics: Animals; Antioxidants; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Host-Parasite Interactions; Lepidoptera; Oryza; Oxylipins; Plant Growth Regulators; Plant Proteins; Reactive Oxygen Species; RNA, Messenger; Salicylic Acid; Signal Transduction; Transcription, Genetic | 2011 |
Lipase activity in insect oral secretions mediates defense responses in Arabidopsis.
How plants perceive herbivory is not yet well understood. We investigated early responses of the model plant Arabidopsis (Arabidopsis thaliana) to attack from the generalist grasshopper herbivore, Schistocerca gregaria (Caelifera). When compared with wounding alone, S. gregaria attack and the application of grasshopper oral secretions (GS) to puncture wounds elicited a rapid accumulation of various oxylipins, including 13-hydroperoxy octadecatrienoic acid, 12-oxo-phytodienoic acid (OPDA), jasmonic acid, and jasmonic acid-isoleucine. Additionally, GS increased cytosolic calcium levels, mitogen-activated protein kinase (MPK3 and MPK6) activity, and ethylene emission but not the accumulation of hydrogen peroxide. Although GS contain caeliferin A16:0, a putative elicitor of caeliferan herbivores, treatment with pure, synthetic caeliferin A16:0 did not induce any of the observed responses. With mutant plants, we demonstrate that the observed changes in oxylipin levels are independent of MPK3 and MPK6 activity but that MPK6 is important for the GS-induced ethylene release. Biochemical and pharmacological analyses revealed that the lipase activity of GS plays a central role in the GS-induced accumulation of oxylipins, especially OPDA, which could be fully mimicked by treating puncture wounds only with a lipase from Rhizopus arrhizus. GS elicitation increased the levels of OPDA-responsive transcripts. Because the oral secretions of most insects used to study herbivory-induced responses in Arabidopsis rapidly elicit similar accumulations of OPDA, we suggest that lipids containing OPDA (arabidopsides) play an important role in the activation of herbivory-induced responses. Topics: Animals; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Grasshoppers; Insecta; Lipase; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Molecular Sequence Data; Mouth; Oxylipins; Reactive Oxygen Species; RNA, Messenger | 2011 |
Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach.
In order to comprehend the mechanisms of induced plant defense, knowledge of the biosynthesis and signaling pathways mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) is essential. Potentially, many transcription factors could be involved in the regulation of these pathways, although finding them is a difficult endeavor. Here we report the use of publicly available Arabidopsis microarray datasets to generate gene co-expression networks.. Using 372 publicly available microarray data sets, a network was constructed in which Arabidopsis genes for known components of SA, JA and ET pathways together with the genes of over 1400 transcription factors were assayed for co-expression. After determining the Pearson Correlation Coefficient cutoff to obtain the most probable biologically relevant co-expressed genes, the resulting network confirmed the presence of many genes previously reported in literature to be relevant for stress responses and connections that fit current models of stress gene regulation, indicating the potential of our approach. In addition, the derived network suggested new candidate genes and associations that are potentially interesting for future research to further unravel their involvement in responses to stress.. In this study large sets of stress related microarrays were used to reveal co-expression networks of transcription factors and signaling pathway components. These networks will benefit further characterization of the signal transduction pathways involved in plant defense. Topics: Algorithms; Arabidopsis; Biosynthetic Pathways; Cluster Analysis; Computational Biology; Cyclopentanes; Databases, Genetic; Defensins; Ethylenes; Gene Expression Regulation, Plant; Gene Regulatory Networks; Genes, Plant; Microarray Analysis; Oxylipins; Salicylic Acid; Signal Transduction; Stress, Physiological; Transcription Factors | 2011 |
Effect of jasmonates on ethylene biosynthesis and aroma volatile emission in Japanese apricot infected by a pathogen (Colletotrichum gloeosporioides).
The effects of the application of the jasmonic acid derivative n-propyl dihydrojasmonate (PDJ) on ethylene biosynthesis, volatile compounds, and endogenous jasmonic acid (JA) and methyl jasmonate (MeJA) were examined in Japanese apricot (Prunus mume Sieb.) infected by a pathogen (Colletotrichum gloeosporioides). The fruit were dipped into 0.4 mM PDJ solution before inoculation with the pathogen and stored at 25 °C for 6 days. The inoculation induced an increase in 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene, JA, and MeJA. In contrast, PDJ application reduced the endogenous JA, MeJA, and ethylene production and expression of the ACC oxidase gene (PmACO1) caused by the pathogen infection. The lesion diameter with C. gloeosporioides decreased upon PDJ application. The alcohol, ester, ketone, and lactone concentrations and alcohol acyltransferase (AAT) activity increased in the pathogen-infected fruit, but were decreased by PDJ application. These results suggest that PDJ application might influence ethylene production through PmACO1 and that aroma volatile emissions affected by pathogen infection can be correlated with the ethylene production, which is mediated by the levels of jasmonates. Topics: Amino Acid Oxidoreductases; Colletotrichum; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Proteins; Prunus; Volatile Organic Compounds | 2011 |
S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata.
S-nitrosoglutathione reductase (GSNOR) reduces the nitric oxide (NO) adduct S-nitrosoglutathione (GSNO), an essential reservoir for NO bioactivity. In plants, GSNOR has been found to be important in resistance to bacterial and fungal pathogens, but whether it is also involved in plant-herbivore interactions was not known. Using a virus-induced gene silencing (VIGS) system, the activity of GSNOR in a wild tobacco species, Nicotiana attenuata, was knocked down and the function of GSNOR in defence against the insect herbivore Manduca sexta was examined. Silencing GSNOR decreased the herbivory-induced accumulation of jasmonic acid (JA) and ethylene, two important phytohormones regulating plant defence levels, without compromising the activity of two mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK). Decreased activity of trypsin proteinase inhibitors (TPIs) were detected in GSNOR-silenced plants after simulated M. sexta feeding and bioassays indicated that GSNOR-silenced plants have elevated susceptibility to M. sexta attack. Furthermore, GSNOR is required for methyl jasmonate (MeJA)-induced accumulation of defence-related secondary metabolites (TPI, caffeoylputrescine, and diterpene glycosides) but is not needed for the transcriptional regulation of JAZ3 (jasmonate ZIM-domain 3) and TD (threonine deaminase), indicating that GSNOR mediates certain but not all jasmonate-inducible responses. This work highlights the important role of GSNOR in plant resistance to herbivory and jasmonate signalling and suggests the potential involvement of NO in plant-herbivore interactions. Our data also suggest that GSNOR could be a target of genetic modification for improving crop resistance to herbivores. Topics: Acetates; Aldehyde Oxidoreductases; Animals; Cyclopentanes; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Gene Silencing; Herbivory; Manduca; Mitogen-Activated Protein Kinases; Nicotiana; Oxylipins; Plant Proteins; RNA, Messenger | 2011 |
Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize.
Nonvolatile terpenoid phytoalexins occur throughout the plant kingdom, but until recently were not known constituents of chemical defense in maize (Zea mays). We describe a novel family of ubiquitous maize sesquiterpenoid phytoalexins, termed zealexins, which were discovered through characterization of Fusarium graminearum-induced responses. Zealexins accumulate to levels greater than 800 μg g⁻¹ fresh weight in F. graminearum-infected tissue. Their production is also elicited by a wide variety of fungi, Ostrinia nubilalis herbivory, and the synergistic action of jasmonic acid and ethylene. Zealexins exhibit antifungal activity against numerous phytopathogenic fungi at physiologically relevant concentrations. Structural elucidation of four members of this complex family revealed that all are acidic sesquiterpenoids containing a hydrocarbon skeleton that resembles β-macrocarpene. Induced zealexin accumulation is preceded by increased expression of the genes encoding TERPENE SYNTHASE6 (TPS6) and TPS11, which catalyze β-macrocarpene production. Furthermore, zealexin accumulation displays direct positive relationships with the transcript levels of both genes. Microarray analysis of F. graminearum-infected tissue revealed that Tps6/Tps11 were among the most highly up-regulated genes, as was An2, an ent-copalyl diphosphate synthase associated with production of kauralexins. Transcript profiling suggests that zealexins cooccur with a number of antimicrobial proteins, including chitinases and pathogenesis-related proteins. In addition to zealexins, kauralexins and the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-glucose) were produced in fungal-infected tissue. HDMBOA-glucose accumulation occurred in both wild-type and benzoxazine-deficient1 (bx1) mutant lines, indicating that Bx1 gene activity is not required for HDMBOA biosynthesis. Together these results indicate an important cooperative role of terpenoid phytoalexins in maize biochemical defense. Topics: Acids; Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Fungi; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation, Plant; Genes, Plant; Insecta; Oxylipins; Phytoalexins; Plant Diseases; Plant Proteins; RNA, Messenger; Sesquiterpenes; Up-Regulation; Zea mays | 2011 |
Accumulation of γ- rather than α-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana.
Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants. Topics: alpha-Tocopherol; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Dehydration; Ethylenes; gamma-Tocopherol; Gene Expression Regulation, Plant; Genes, Plant; Methyltransferases; Mutation; Oxylipins; Plant Leaves; Signal Transduction; Sodium Chloride; Stress, Physiological; Time Factors | 2011 |
Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis.
Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense. Topics: Arabidopsis; Arabidopsis Proteins; Base Sequence; Botrytis; Cyclopentanes; DNA-Binding Proteins; DNA, Plant; Ethylenes; Histone Deacetylases; Models, Biological; Nuclear Proteins; Oxylipins; Plant Growth Regulators; Plant Roots; Plants, Genetically Modified; Repressor Proteins; Signal Transduction; Transcription Factors; Two-Hybrid System Techniques | 2011 |
The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory.
Protease inhibitors (PIs) function in the precise regulation of proteases, and are thus involved in diverse biological processes in many organisms. Here, we studied the functions of the Arabidopsis UNUSUAL SERINE PROTEASE INHIBITOR (UPI) gene, which encodes an 8.8 kDa protein of atypical sequence relative to other PIs. Plants harboring a loss-of-function UPI allele displayed enhanced susceptibility to the necrotrophic fungi Botrytis cinerea and Alternaria brassicicola as well as the generalist herbivore Trichoplusia ni. Further, ectopic expression conferred increased resistance to B. cinerea and T. ni. In contrast, the mutant has wild-type responses to virulent, avirulent and non-pathogenic strains of Pseudomonas syringae, thus limiting the defense function of UPI to necrotrophic fungal infection and insect herbivory. Expression of UPI is significantly induced by jasmonate, salicylic acid and abscisic acid, but is repressed by ethylene, indicating complex phytohormone regulation of UPI expression. The upi mutant also shows significantly delayed flowering, associated with decreased SOC1 expression and elevated levels of MAF1, two regulators of floral transition. Recombinant UPI strongly inhibits the serine protease chymotrypsin but also weakly blocks the cysteine protease papain. Interestingly, jasmonate induces intra- and extracellular UPI accumulation, suggesting a possible role in intercellular or extracellular functions. Overall, our results show that UPI is a dual-specificity PI that functions in plant growth and defense, probably through the regulation of endogenous proteases and/or those of biotic invaders. Topics: Abscisic Acid; Alternaria; Amino Acid Sequence; Animals; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Herbivory; Insecta; Molecular Sequence Data; Oxylipins; Plant Diseases; Plant Growth Regulators; Plants, Genetically Modified; Protease Inhibitors; Pseudomonas syringae; Salicylic Acid | 2011 |
RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots.
Plant roots play important roles not only in the absorption of water and nutrients, but also in stress tolerance. Previously, we identified RSOsPR10 as a root-specific pathogenesis-related (PR) protein induced by drought and salt treatments in rice. Transcripts and proteins of RSOsPR10 were strongly induced by jasmonate (JA) and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while salicylic acid (SA) almost completely suppressed these inductions. Immunohistochemical analyses showed that RSOsPR10 strongly accumulated in cortex cells surrounding the vascular system of roots, and this accumulation was also suppressed when SA was applied simultaneously with stress or hormone treatments. In the JA-deficient mutant hebiba, RSOsPR10 expression was up-regulated by NaCl, wounding, drought and exogenous application of JA. This suggested the involvement of a signal transduction pathway that integrates JA and ET signals in plant defense responses. Expression of OsERF1, a transcription factor in the JA/ET pathway, was induced earlier than that of RSOsPR10 after salt, JA and ACC treatments. Simultaneous SA treatment strongly inhibited the induction of RSOsPR10 expression and, to a lesser extent, induction of OsERF1 expression. These results suggest that JA/ET and SA pathways function in the stress-responsive induction of RSOsPR10, and that OsERF1 may be one of the transcriptional factors in the JA/ET pathway. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oryza; Oxylipins; Plant Growth Regulators; Plant Proteins; Plant Roots; RNA, Plant; Salicylic Acid; Salinity; Signal Transduction; Stress, Physiological; Transcription Factors | 2011 |
An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice.
Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H(2)O(2) biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H(2)O(2) pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant's metabolism towards an appropriate response to chewing or piercing/sucking insects. Topics: Animals; Cloning, Molecular; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Regulator; Hemiptera; Herbivory; Hydrogen Peroxide; Oryza; Oxylipins; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Transcription Factors | 2011 |
Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis.
Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect's growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize, and in the current study, we examined the early biochemical changes that occur in maize stems in response to ECB herbivory and how these rapidly induced defenses influence the growth of ECB. We measured the quantities of known maize defense compounds, benzoxazinoids and the kauralexin class of diterpenoid phytoalexins. ECB herbivory resulted in decreased levels of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (DIMBOA-Glc), and a corresponding increase in 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). Total quantities of benzoxazinoids and kauralexins were increased as early as 24 h after the initiation of ECB feeding. The plant hormones, jasmonic acid (JA) and ethylene (ET), and the transcripts encoding their key biosynthetic enzymes also accumulated in response to ECB herbivory, consistent with a role in defense regulation. The combined pharmacological application of JA and the ET precursor, 1-aminocyclopropane-1-carboxylic acid to stem internode tissue likewise resulted in changes in benzoxazinoids similar to that observed with ECB damage. Despite the fact that maize actively mounts a defense response to ECB stem feeding, no differences in percent weight gain were observed between ECB larvae that fed upon non-wounded control tissues compared to tissues obtained from plants previously subjected to 24 h ECB stem herbivory. These rapid defense responses in maize stems do not appear to negatively impact ECB growth, thus suggesting that ECB have adapted to these induced biochemical changes. Topics: Animals; Benzoxazines; Cyclopentanes; Ethylenes; Herbivory; Host-Parasite Interactions; Inflammation Mediators; Lepidoptera; Oxylipins; Plant Stems; Zea mays | 2011 |
Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis.
Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) regulates immune responses to a distinct class of pathogens. Here, mechanisms underlying BIK1 function and its interactions with other immune response regulators were determined. We describe BIK1 function as a component of ethylene (ET) signaling and PAMP-triggered immunity (PTI) to fungal pathogens. BIK1 in vivo kinase activity increases in response to flagellin peptide (flg22) and the ET precursor 1-aminocyclopropane-1-carboxylic acid (ACC) but is blocked by inhibition of ET perception. BIK1 induction by flg22, ACC, and pathogens is strictly dependent on EIN3, and the bik1 mutation results in altered expression of ET-regulated genes. BIK1 site-directed mutants were used to determine residues essential for phosphorylation and biological functions in planta, including PTI, ET signaling, and plant growth. Genetic analysis revealed flg22-induced PTI to Botrytis cinerea requires BIK1, EIN2, and HUB1 but not genes involved in salicylate (SA) functions. BIK1-mediated PTI to Pseudomonas syringae is modulated by SA, ET, and jasmonate signaling. The coi1 mutation suppressed several bik1 phenotypes, suggesting that COI1 may act as a repressor of BIK1 function. Thus, common and distinct mechanisms underlying BIK1 function in mediating responses to distinct pathogens are uncovered. In sum, the critical role of BIK1 in plant immune responses hinges upon phosphorylation, its function in ET signaling, and complex interactions with other immune response regulators. Topics: Amino Acid Sequence; Amino Acids, Cyclic; Arabidopsis; Arabidopsis Proteins; Botrytis; Conserved Sequence; Cyclopentanes; Ethylenes; Flagellin; Gene Expression Regulation, Plant; Hypocotyl; Molecular Sequence Data; Mutation; Oxylipins; Phenotype; Phosphorylation; Plant Diseases; Plant Growth Regulators; Plant Immunity; Plants, Genetically Modified; Protein Serine-Threonine Kinases; Pseudomonas syringae; Salicylic Acid; Seedlings; Signal Transduction | 2011 |
The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death.
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Solanum lycopersicum; Sphingosine | 2011 |
Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis.
α-1-4-Linked oligogalacturonides (OGs) derived from plant cell walls are a class of damage-associated molecular patterns and well-known elicitors of the plant immune response. Early transcript changes induced by OGs largely overlap those induced by flg22, a peptide derived from bacterial flagellin, a well-characterized microbe-associated molecular pattern, although responses diverge over time. OGs also regulate growth and development of plant cells and organs, due to an auxin-antagonistic activity. The molecular basis of this antagonism is still unknown. Here we show that, in Arabidopsis (Arabidopsis thaliana), OGs inhibit adventitious root formation induced by auxin in leaf explants as well as the expression of several auxin-responsive genes. Genetic, biochemical, and pharmacological experiments indicate that inhibition of auxin responses by OGs does not require ethylene, jasmonic acid, and salicylic acid signaling and is independent of RESPIRATORY BURST OXIDASE HOMOLOGUE D-mediated reactive oxygen species production. Free indole-3-acetic acid levels are not noticeably altered by OGs. Notably, OG- as well as flg22-auxin antagonism does not involve any of the following mechanisms: (1) stabilization of auxin-response repressors; (2) decreased levels of auxin receptor transcripts through the action of microRNAs. Our results suggest that OGs and flg22 antagonize auxin responses independently of Aux/Indole-3-Acetic Acid repressor stabilization and of posttranscriptional gene silencing. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cycloheximide; Cyclopentanes; Ethylenes; Flagellin; Gene Expression Regulation, Plant; Gene Knockout Techniques; Indoleacetic Acids; MicroRNAs; Mutation; Oligosaccharides; Oxylipins; Protein Stability; Repressor Proteins; RNA Interference; Signal Transduction; Up-Regulation | 2011 |
Brush and spray: a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening.
Systemic acquired resistance (SAR) is a defense mechanism induced in the distal parts of plants after primary infection. It confers long-lasting protection against a broad spectrum of microbial pathogens. Lack of high-throughput assays has hampered the forward genetic analysis of SAR. Here, we report the development of an easy and efficient assay for SAR and its application in a forward genetic screen for SAR-deficient mutants in Arabidopsis (Arabidopsis thaliana). Using the new assay for SAR, we identified six flavin-dependent monooxygenase1, four AGD2-like defense response protein1, three salicylic acid induction-deficient2, one phytoalexin deficient4, and one avrPphB-susceptible3 alleles as well as a gain-of-function mutant of CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR3 designated camta3-3D. Like transgenic plants overexpressing CAMTA3, camta3-3D mutant plants exhibit compromised SAR and enhanced susceptibility to virulent pathogens, suggesting that CAMTA3 is a critical regulator of both basal resistance and SAR. Topics: Alleles; Arabidopsis; Arabidopsis Proteins; Cloning, Molecular; Cyclopentanes; Disease Resistance; Ethylenes; Genetic Testing; High-Throughput Screening Assays; Mutation; Oxylipins; Peronospora; Plant Diseases; Plant Leaves; Pseudomonas syringae; Salicylic Acid | 2011 |
Transcriptome analysis of Arabidopsis thaliana plants in response to kin and stranger recognition.
Recent reports have demonstrated that Arabidopsis thaliana has the ability to alter its growth differentially when grown in the presence of secretions from other A. thaliana plants that are kin or strangers, however, little knowledge has been gained as to the physiological processes involved in these plant-plant interactions. Therefore, we examined the root transcriptome of A. thaliana plants exposed to stranger versus kin secretions to determine genes involved in these processes. We conducted a whole transcriptome analysis on root tissues and categorized genes with significant changes in expression. Genes from four categories of interest based on significant changes in expression were identified as ATP/GST transporter, auxin/auxin related, secondary metabolite and pathogen response genes. Multiple genes in each category were tested and results indicated that pathogen response genes were involved in the kin recognition response. Plants were then infected with Pseudomonas syringe pv. Tomato DC3000 to further examine the role of these genes in plants exposed to own, kin and stranger secretions in pathogen resistance. This study concluded that multiple physiological pathways are involved in the kin recognition. The possible implication of this study opens up a new dialogue in terms of how plant-plant interactions change under a biotic stress. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Oxylipins; Plant Roots; Pseudomonas syringae; Salicylic Acid; Signal Transduction | 2011 |
Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis.
When grafting or wounding disconnects stem tissues, new tissues are generated to restore the lost connection. In this study, the molecular mechanism of such healing was elucidated in injured stems of Arabidopsis. Soon after the inflorescence stems were incised, the pith cells started to divide. This process was strongly inhibited by the elimination of cauline leaves, shoot apices, or lateral buds that reduced the indole-3-acetic acid supply. Microarray and quantitative RT-PCR analyses revealed that genes related to cell division, phytohormones, and transcription factors were expressed because of incision. Among them, two plant-specific transcription factor genes, ANAC071 and RAP2.6L, were abundantly expressed. ANAC071 was expressed at 1-3 d after cutting exclusively in the upper region of the cut gap, with concomitant accumulation of indole-3-acetic acid. In contrast, RAP2.6L was expressed at 1 d after cutting exclusively in the lower region, with concomitant deprivation of indole-3-acetic acid. The expression of ANAC071 and RAP2.6L were also promoted by ethylene and jasmonic acid, respectively. In transformants suppressing the function of RAP2.6L or ANAC071, the division of pith cells was inhibited. Furthermore, the ethylene signaling-defective ein2 mutant showed incomplete healing. Hence, plant-specific transcription factors differentially expressed around the cut position were essential for tissue reunion of Arabidopsis wounded flowering stems and were under opposite control by polar-transported auxin, with modification by the ethylene and jasmonic acid wound-inducible hormones. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Flowers; Gene Expression Profiling; Gene Expression Regulation, Plant; Indoleacetic Acids; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Stems; Plants, Genetically Modified; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Transcription Factors; Transcriptome | 2011 |
The chloroplast-localized phospholipases D α4 and α5 regulate herbivore-induced direct and indirect defenses in rice.
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice. Topics: alpha-Linolenic Acid; Animals; Chloroplast Proteins; Chloroplasts; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Hemiptera; Herbivory; Lepidoptera; Oils, Volatile; Oryza; Oxylipins; Phospholipase D; Plant Diseases; Plant Oils; Plant Proteins; Plants, Genetically Modified; RNA, Antisense; Signal Transduction | 2011 |
The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poorly understood. Here, we describe a C. roseus WRKY transcription factor, CrWRKY1, that is preferentially expressed in roots and induced by the phytohormones jasmonate, gibberellic acid, and ethylene. The overexpression of CrWRKY1 in C. roseus hairy roots up-regulated several key TIA pathway genes, especially Tryptophan Decarboxylase (TDC), as well as the transcriptional repressors ZCT1 (for zinc-finger C. roseus transcription factor 1), ZCT2, and ZCT3. However, CrWRKY1 overexpression repressed the transcriptional activators ORCA2, ORCA3, and CrMYC2. Overexpression of a dominant-repressive form of CrWRKY1, created by fusing the SRDX repressor domain to CrWRKY1, resulted in the down-regulation of TDC and ZCTs but the up-regulation of ORCA3 and CrMYC2. CrWRKY1 bound to the W box elements of the TDC promoter in electrophoretic mobility shift, yeast one-hybrid, and C. roseus protoplast assays. Up-regulation of TDC increased TDC activity, tryptamine concentration, and resistance to 4-methyl tryptophan inhibition of CrWRKY1 hairy roots. Compared with control roots, CrWRKY1 hairy roots accumulated up to 3-fold higher levels of serpentine. The preferential expression of CrWRKY1 in roots and its interaction with transcription factors including ORCA3, CrMYC2, and ZCTs may play a key role in determining the root-specific accumulation of serpentine in C. roseus plants. Topics: Amino Acid Sequence; Base Sequence; Catharanthus; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Molecular Sequence Data; Nucleotide Motifs; Oxylipins; Phylogeny; Plant Components, Aerial; Plant Growth Regulators; Plant Proteins; Plant Roots; Plants, Genetically Modified; Promoter Regions, Genetic; Recombinant Proteins; Secologanin Tryptamine Alkaloids; Sequence Alignment; Sequence Analysis, DNA; Transcription Factors; Transcriptional Activation; Up-Regulation | 2011 |
Mechanisms of optimal defense patterns in Nicotiana attenuata: flowering attenuates herbivory-elicited ethylene and jasmonate signaling.
To defend themselves against herbivore attack, plants produce secondary metabolites, which are variously inducible and constitutively deployed, presumably to optimize their fitness benefits in light of their fitness costs. Three phytohormones, jasmonates (JA) and their active forms, the JA-isoleucine (JA-Ile) and ethylene (ET), are known to play central roles in the elicitation of induced defenses, but little is known about how this mediation changes over ontogeny. The Optimal Defense Theory (ODT) predicts changes in the costs and benefits of the different types of defenses and has been usefully extrapolated to their modes of deployment. Here we studied whether the herbivore-induced accumulation of JA, JA-Ile and ET changed over ontogeny in Nicotiana attenuata, a native tobacco in which inducible defenses are particularly well studied. Herbivore-elicited ET production changed dramatically during six developmental stages, from rosette through flowering, decreasing with the elongation of the first corollas during flower development. This decrease was largely recovered within a day after flower removal by decapitation. A similar pattern was found for the herbivore-induced accumulation of JA and JA-Ile. These results are consistent with ODT predictions and suggest that the last steps in floral development control the inducibility of at least three plant hormones, optimizing defense-growth tradeoffs. Topics: Amino Acids; Animals; Cyclopentanes; Ethylenes; Fatty Acids; Flowers; Herbivory; Inflorescence; Isoleucine; Manduca; Nicotiana; Oxylipins; Plant Leaves; Signal Transduction | 2011 |
The pathogenic white-rot fungus Heterobasidion parviporum triggers non-specific defence responses in the bark of Norway spruce.
Norway spruce [Picea abies (L.) Karst.] is one of the economically most important conifer species in Europe. The major pathogen on Norway spruce is Heterobasidion parviporum (Fr.) Niemelä & Korhonen. To achieve a better understanding of Norway spruce's defence mechanisms, transcriptional responses in bark to H. parviporum infection were compared with the response to wounding using cDNA-amplified fragment length polymorphism. The majority of the recovered transcript-derived fragments (TDFs) showed a similar expression pattern for infection and wounding treatment, although inoculated samples showed an enhanced reaction. Genes related to systemic acquired resistance, e.g., PR1, accumulated after H. parviporum infection. Simultaneously, several transcripts involved in various aspects of jasmonic acid (JA)- and ethylene (ET)-mediated signalling accumulated. Genes involved in the ubiquitin/proteasome system were also regulated. Expression patterns have been confirmed by quantitative polymerase chain reaction. The expression patterns of the isolated TDFs suggest that infection with H. parviporum in Norway spruce induces a broad defence, with many similarities to non-specific defence responses in angiosperms. The parallel induction of salicylic acid- and JA/ET-mediated pathways implies spatially separated responses in different cell layers, with and without hyphal contact. A set of TDFs were analysed in an independent experiment with unrelated material treated with wounding or with inoculation with H. parviporum or Phlebiopsis gigantea, verifying the original observations and underlining the non-specific defence responses. In addition, our data suggest that rerouting of carbon in secondary metabolism is an integral part of Norway spruce induced defence. We report the sequences of three 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase genes (PaDAHP1, PaDAHP2 and PaDAHP3) and their relative expression in response to wounding and infection with H. parviporum and P. gigantea. The results clearly indicate differential regulation of the three DAHPs in the induced defence responses in Norway spruce. This study gives insights into the central mechanisms in the induced defences in Norway spruce. Topics: Amplified Fragment Length Polymorphism Analysis; Base Sequence; Basidiomycota; Carbon; Cyclopentanes; Disease Resistance; DNA, Complementary; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Magnoliopsida; Oxylipins; Picea; Plant Bark; Plant Diseases; Proteasome Endopeptidase Complex; Salicylic Acid; Signal Transduction; Sugar Acids; Transcription, Genetic; Ubiquitin | 2011 |
Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms.
Depending on the threat to a plant, different pattern recognition receptors, such as receptor-like kinases, identify the stress and trigger action by appropriate defense response development. The plant immunity system primary response to these challenges is rapid accumulation of phytohormones, such as ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) and its derivatives. These phytohormones induce further signal transduction and appropriate defenses against biotic threats. Phytohormones play crucial roles not only in the initiation of diverse downstream signaling events in plant defense but also in the activation of effective defenses through an essential process called signaling pathway crosstalk, a mechanism involved in transduction signals between two or more distinct, "linear signal transduction pathways simultaneously activated in the same cell." Topics: Arabidopsis; Cantharidin; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Phosphoprotein Phosphatases; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Signal Transduction | 2011 |
Does singlet oxygen activate cell death in Arabidopsis cell suspension cultures?: analysis of the early transcriptional defense responses to high light stress.
Can Arabidopsis cell suspension cultures (ACSC) provide a useful working model to investigate genetically-controlled defense responses with signaling cascades starting in chloroplasts? In order to provide a convincing answer, we analyzed the early transcriptional profile of Arabidopsis cells at high light (HL). The results showed that ACSC respond to HL in a manner that resembles the singlet oxygen ((1)O(2))-mediated defense responses described for the conditional fluorescent (flu) mutant of Arabidopsis thaliana. The flu mutant is characterized by the accumulation of free protochlorophyllide (Pchlide) in plastids when put into darkness and the subsequent production of (1)O(2) when the light is on. In ACSC, (1)O(2) is produced in chloroplasts at HL when excess excitation energy flows into photosystem II (PSII). Other reactive oxygen species are also produced in ACSC at HL, but to a lesser extent. When the HL stress ceases, ACSC recovers the initial rate of oxygen evolution and cell growth continues. We can conclude that chloroplasts of ACSC are both photosynthetically active and capable of initiating (1)O(2)-mediated signaling cascades that activate a broad range of genetically-controlled defense responses. The upregulation of transcripts associated with the biosynthesis and signaling pathways of OPDA (12-oxophytodienoic acid) and ethylene (ET) suggests that the activated defense responses at HL are governed by these two hormones. In contrast to the flu mutant, the (1)O(2)-mediated defense responses were independent of the upregulation of EDS1 (enhanced disease susceptibility) required for the accumulation of salicylic acid (SA) and genetically-controlled cell death. Interestingly, a high correlation in transcriptional expression was also observed between ACSC at HL, and the aba1 and max4 mutants of Arabidopsis, characterized by defects in the biosynthesis pathways of abscisic acid (ABA) and strigolactones, respectively. Topics: Arabidopsis; Cell Death; Cells, Cultured; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Light; Oxylipins; Plant Cells; Salicylic Acid; Signal Transduction; Singlet Oxygen; Stress, Physiological; Thylakoids; Transcriptome | 2011 |
A germin-like protein gene (CchGLP) of Capsicum chinense Jacq. is induced during incompatible interactions and displays Mn-superoxide dismutase activity.
A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44-47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV. Topics: Capsicum; Cloning, Molecular; Computational Biology; Cyclopentanes; Disease Resistance; Escherichia coli; Ethylenes; Geminiviridae; Gene Expression Regulation, Plant; Glycoproteins; Mosaic Viruses; Oxylipins; Phytophthora; Plant Diseases; Plant Proteins; Recombinant Proteins; Salicylic Acid; Sequence Analysis, DNA; Superoxide Dismutase | 2011 |
Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses.
The three closely related Arabidopsis basic leucine zipper (bZIP) transcription factors TGA2, TGA5 and TGA6 are required for the establishment of the salicylic acid (SA)-dependent plant defense response systemic acquired resistance, which is effective against biotrophic pathogens. Here we show that the same transcription factors are essential for the activation of jasmonic acid (JA)- and ethylene (ET)-dependent defense mechanisms that counteract necrotrophic pathogens: the tga256 triple mutant is impaired in JA/ET-induced PDF1.2 and b-CHI expression, which correlates with a higher susceptibility against the necrotroph Botrytis cinerea. JA/ET induction of the trans-activators ERF1 and ORA59, which act upstream of PDF1.2, was slightly increased (ERF1) or unaffected (ORA59). PDF1.2 expression can be restored in the tga256 mutant by increased expression of ORA59, as observed in the tga256 jin1 quadruple mutant, which lacks the transcription factor JIN1/AtMYC2 that functions as a negative regulator of the JA/ET-dependent anti-fungal defense program. Whereas JA/ET-induced PDF1.2 expression is strongly suppressed by SA in wild-type plants, no negative effect of SA on PDF1.2 expression was observed in the tga256 jin1 quadruple mutant. These results imply that the antagonistic effects of TGA factors and JIN1/AtMYC2 on the JA/ET pathway are necessary to evoke the SA-mediated suppression of JA/ET-induced defense responses. Topics: Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Basic-Leucine Zipper Transcription Factors; Botrytis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Models, Genetic; Mutation; Nuclear Proteins; Oxylipins; Peptide Termination Factors; Plant Diseases; Plant Growth Regulators; Plants, Genetically Modified; Reverse Transcriptase Polymerase Chain Reaction; Trans-Activators; Transcription Factors | 2010 |
Jasmonic acid does not mediate root growth responses to wounding in Arabidopsis thaliana.
Jasmonic acid (JA) is a crucial plant defence signalling substance that has recently been shown to mediate herbivory-induced root growth reduction in the ecological model species Nicotiana attenuata. To clarify whether JA-induced reduction of root growth might be a general response increasing plant fitness under biotic stress, a suite of experiments was performed with the model plant Arabidopsis thaliana. JA bursts were elicited in leaves of A. thaliana in different ways. Root growth reduction was neither induced by foliar application of herbivore oral secretions nor by direct application of methyl jasmonate to leaves. Root growth reduction was observed when leaves were infected with the pathogen Pseudomonas syringae pv. tomato, which persistently induces the JA signalling pathway. Yet, high resolution growth analyses of this effect in wild type and JA biosynthesis knock-out mutants showed that it was elicited by the bacterial toxin coronatine that suggests ethylene- but not JA-induced root growth reduction in A. thaliana. Overall, the results demonstrate that the reaction of root growth to herbivore-induced JA signalling differs among species, which is discussed in the context of different ecological defence strategies among species. Topics: Acetates; Amino Acids; Animals; Arabidopsis; Cyclopentanes; Cyclopropanes; Ethylenes; Gene Knockout Techniques; Indenes; Oxylipins; Plant Leaves; Plant Roots; Pseudomonas syringae; Signal Transduction; Spodoptera | 2010 |
Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic Acid.
Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ET-signaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RESPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions. Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction | 2010 |
[Analysis of the molecular motif for inducing response to jasmonic acid and ethylene in Pib promoter via rice transformation].
The expression of Pib gene in rice was induced by hormone, such as jasmonic acid and ethylene. In order to determine the necessary regions of sequence or motifs for response to jasmonic acid and ethylene in Pib promoter, the full length promoter of Pib (-3,572 approximately 2 bp) and three different 5' deletion fragments of Pib promoter (-2,692 approximately 2 bp, -1,335 approximately 2 bp, -761 approximately 2 bp) were synthesized by PCR and then were substituted for 35S upstream gus in a binary plasmid to construct re-combined plasmids of Pib promoter-gus fusions. Transgenic rice plants of the four recombined plasmids were produced by Agrobacterium-mediated transformation. Quality and quantum analysis of gus activities in transgenic plants at both protein and mRNA levels were conducted. The promotion activity of the full length promoter of Pib (-3,572 approximately 2 bp, pNAR901) was the highest in the four recombinants and the gus activities in its transgenic plant organs were enhanced obviously at 6 h after treatment with jasmonic acid or ethylene. The promotion activity of the deleted Pib promoters was significantly decreased and the response to jasmonic acid or ethylene treatment was not present when the -3,572 approximately -2,692 bp sequence was knocked out from the Pib promoter. Although the disparity in the lengths of the deleted Pib promoter of pNAR902 (-2,692 approximately 2 bp), pNAR903 (-1,335 approximately 2 bp), and pNAR904 (-761 approximately 2 bp) was more than 2 or 3 times, the response to jasmonic acid or ethylene treatment was not different among their transgenic plants. All these results indicated that the common deleted sequences (-3,572 approximately -2,692 bp) in the three deleted Pib promoter constructs were the essential region to the response to jasmonic acid and ethylene treatment. The result of pib promoter sequence searching indicated that there was only one GCCGCC motif at -2,722 bp of this common deleted segment in the Pib promoter sequence. Our rice transgenic results showed that the GCCGCC may be a cis-motif for Pib gene conferring response to jasmonic acid and ethylene for Pib gene. Topics: Carrier Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Reporter; Oryza; Oxylipins; Phosphate-Binding Proteins; Plant Proteins; Promoter Regions, Genetic; Transformation, Genetic | 2010 |
Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90-166 is through both auxin-dependent and -independent signaling pathways.
The rhizobacterium Serratia marcescens strain 90-166 was previously reported to promote plant growth and induce resistance in Arabidopsis thaliana. In this study, the influence of strain 90-166 on root development was studied in vitro. We observed inhibition of primary root elongation, enhanced lateral root emergence, and early emergence of second order lateral roots after inoculation with strain 90-166 at a certain distance from the root. Using the DR5::GUS transgenic A. thaliana plant and an auxin transport inhibitor, N-1-naphthylphthalamic acid, the altered root development was still elicited by strain 90-166, indicating that this was not a result of changes in plant auxin levels. Intriguingly, indole-3-acetic acid, a major auxin chemical, was only identified just above the detection limit in liquid culture of strain 90-166 using liquid chromatography-mass spectrometry. Focusing on bacterial determinants of the root alterations, we found that primary root elongation was inhibited in seedlings treated with cell supernatant (secreted compounds), while lateral root formation was induced in seedlings treated with lysate supernatant (intracellular compounds). Further study revealed that the alteration of root development elicited by strain 90-166 involved the jasmonate, ethylene, and salicylic acid signaling pathways. Collectively, our results suggest that strain 90-166 can contribute to plant root development via multiple signaling pathways. Topics: Arabidopsis; Culture Media, Conditioned; Cyclopentanes; Ethylenes; Indoleacetic Acids; Oxylipins; Phthalimides; Plant Growth Regulators; Plant Roots; Plants, Genetically Modified; Salicylic Acid; Seedlings; Serratia marcescens; Signal Transduction | 2010 |
Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge.
Leafy spurge (Euphorbia esula) is an herbaceous perennial weed that produces vegetatively from an abundance of underground adventitious buds. In this study, we report the effects of different environmental conditions on vegetative production and flowering competence, and determine molecular mechanisms associated with dormancy transitions under controlled conditions. Reduction in temperature (27-10 degrees C) and photoperiod (16-8 h) over a 3-month period induced a para- to endo-dormant transition in crown buds. An additional 11 weeks of cold (5-7 degrees C) and short-photoperiod resulted in accelerated shoot growth from crown buds, and 99% floral competence when plants were returned to growth-promoting conditions. Exposure of paradormant plants to short-photoperiod and prolonged cold treatment alone had minimal affect on growth potential and resulted in ~1% flowering. Likewise, endodormant crown buds without prolonged cold treatment displayed delayed shoot growth and ~2% flowering when returned to growth-promoting conditions. Transcriptome analysis revealed that 373 and 260 genes were differentially expressed (P < 0.005) during para- to endo-dormant and endo- to eco-dormant transitions, respectively. Transcripts from flower competent vs. non-flower competent crown buds identified 607 differentially expressed genes. Further, sub-network analysis identified expression targets and binding partners associated with circadian clock, dehydration/cold signaling, phosphorylation cascades, and response to abscisic acid, ethylene, gibberellic acid, and jasmonic acid, suggesting these central regulators affect well-defined phases of dormancy and flowering. Potential genetic pathways associated with these dormancy transitions and flowering were used to develop a proposed conceptual model. Topics: Abscisic Acid; Cold Temperature; Cyclopentanes; Ethylenes; Euphorbia; Flowers; Gene Expression Profiling; Gene Expression Regulation, Plant; Gibberellins; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Shoots; RNA, Plant | 2010 |
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways. Topics: Arabidopsis; Arabidopsis Proteins; Chitin; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Flagella; Glucans; Host-Pathogen Interactions; Indoles; N-Glycosyl Hydrolases; Oxylipins; Peptidoglycan; Plant Roots; Plants, Genetically Modified; Pseudomonas; RNA, Plant; Salicylic Acid; Signal Transduction; Thiazoles | 2010 |
Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves.
Jasmonic acid (JA) and ethylene (ET) are known to play important roles in mediating plant defense against herbivores, but how they affect development in herbivore-attacked plants is unknown. We used JA-deficient (silenced in LIPOXYGENASE3 [asLOX3]) and ET-insensitive (expressing a mutated dominant negative form of ETHYLENE RESPONSE1 [mETR1]) Nicotiana attenuata plants, and their genetic cross (mETR1asLOX3), to examine growth and development of these plants under simulated herbivory conditions. At the whole plant level, both hormones suppressed leaf expansion after the plants had been wounded and the wounds had been immediately treated with Manduca sexta oral secretions (OS). In addition, ectopic cell expansion was observed around both water- and OS-treated wounds in mETR1asLOX3 leaves but not in mETR1, asLOX3, or wild-type leaves. Pretreating asLOX3 leaves with the ET receptor antagonist 1-methylcyclopropane resulted in local cell expansion that closely mimicked the mETR1asLOX3 phenotype. We found higher auxin (indole-3-acetic acid) levels in the elicited leaves of mETR1asLOX3 plants, a trait that is putatively associated with enhanced cell expansion and leaf growth in this genotype. Transcript profiling of OS-elicited mETR1asLOX3 leaves revealed a preferential accumulation of transcripts known to function in cell wall remodeling, suggesting that both JA and ET act as negative regulators of these genes. We propose that in N. attenuata, JA-ET cross talk restrains local cell expansion and growth after herbivore attack, allowing more resources to be allocated to induced defenses against herbivores. Topics: Animals; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Silencing; Indoleacetic Acids; Manduca; Molecular Sequence Data; Nicotiana; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Growth Regulators; Plant Leaves | 2010 |
A comparative genomic analysis of plant hormone related genes in different species.
Plant hormones are small molecules that play important roles throughout the life span of a plant, known as auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Genetic and molecular studies in the model organism Arabidopsis thaliana have revealed the individual pathways of various plant hormone responses. In this study, we selected 479 genes that were convincingly associated with various hormone actions based on genetic evidence. By using these 479 genes as queries, a genome-wide search for their orthologues in several species (microorganisms, plants and animals) was performed. Meanwhile, a comparative analysis was conducted to evaluate their evolutionary relationship. Our analysis revealed that the metabolisms and functions of plant hormones are generally more sophisticated and diversified in higher plant species. In particular, we found that several phytohormone receptors and key signaling components were not present in lower plants or animals. Meanwhile, as the genome complexity increases, the orthologue genes tend to have more copies and probably gain more diverse functions. Our study attempts to introduce the classification and phylogenic analysis of phytohormone related genes, from metabolism enzymes to receptors and signaling components, in different species. Topics: Abscisic Acid; Arabidopsis Proteins; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Gibberellins; Indoleacetic Acids; Multigene Family; Oxylipins; Plant Growth Regulators; Salicylic Acid; Signal Transduction | 2010 |
Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae.
Vascular wilts caused by Verticillium spp. are very difficult to control and, as a result, are the cause of severe yield losses in a wide range of economically important crops. The responses of Arabidopsis thaliana mutant plants impaired in known pathogen response pathways were used to explore the components in defence against Verticillium dahliae. Analysis of the mutant responses revealed enhanced resistance in etr1-1[ethylene (ET) receptor mutant] plants, but not in salicylic acid-, jasmonic acid- or other ET-deficient mutants, indicating a crucial role of ETR1 in defence against this pathogen. Quantitative polymerase chain reaction analysis revealed that the decrease in symptom severity shown in etr1-1 plants was associated with significant reductions in the growth of the pathogen in the vascular tissues of the plants, suggesting that impaired perception of ET via ETR1 results in increased disease resistance. Furthermore, the activation and increased accumulation of the PR-1, PR-2, PR-5, GSTF12, GSTU16, CHI-1, CHI-2 and Myb75 genes, observed in etr1-1 plants after V. dahliae inoculation, indicate that the outcome of the induced defence response of etr1-1 plants seems to be dependent on a set of defence genes activated on pathogen attack. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA, Fungal; Ethylenes; Gene Expression Regulation, Plant; Mutation; Oxylipins; Plant Diseases; Polymerase Chain Reaction; Receptors, Cell Surface; Salicylic Acid; Signal Transduction; Transcription, Genetic; Verticillium | 2010 |
Ectopic expression of the rice lumazine synthase gene contributes to defense responses in transgenic tobacco.
Lumazine synthase (LS) catalyzes the penultimate reaction in the multistep riboflavin biosynthesis pathway, which is involved in plant defenses. Plant defenses are often subject to synergistic effects of jasmonic acid and ethylene whereas LS is a regulator of jasmonic acid signal transduction. However, little is known about whether the enzyme contributes to defense responses. To study the role of LS in plant pathogen defenses, we generated transgenic tobacco expressing the rice (Oryza sativa) LS gene, OsLS. OsLS was cloned and found to have strong identity with its homologues in higher plants and less homology to microbial orthologues. The OsLS protein localized to chloroplasts in three OsLS-expressing transgenic tobacco (LSETT) lines characterized as enhanced in growth and defense. Compared with control plants, LSETT had higher content of both riboflavin and the cofactors flavin mononucleotide and flavin adenine dinucleotide. In LSETT, jasmonic acid and ethylene were elevated, the expression of defense-related genes was induced, levels of resistance to pathogens were enhanced, and resistance was effective to viral, bacterial, and oomycete pathogens. Extents of OsLS expression correlated with increases in flavin, jasmonic acid, and ethylene content, and correlated with increases in resistance levels, suggesting a role for OsLS in defense responses. Topics: Amino Acid Sequence; Chloroplasts; Cyclopentanes; Ethylenes; Molecular Sequence Data; Multienzyme Complexes; Nicotiana; Oryza; Oxylipins; Plants, Genetically Modified; Riboflavin | 2010 |
Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling.
Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable.. To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response.. These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses. Topics: Animals; Arabidopsis; Arabidopsis Proteins; Calcium; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinases; Cyclopentanes; Cytosol; Ethylenes; Gene Expression Regulation, Plant; Mutation; Nicotiana; Oxylipins; Phosphorylation; Plants, Genetically Modified; Recombinant Proteins; RNA, Plant; Spodoptera; Transcription Factors; Transcription, Genetic | 2010 |
Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana.
Studies of the interaction between Arabidopsis thaliana and the necrotrophic fungal pathogen Sclerotinia sclerotiorum have been hampered by the extreme susceptibility of this model plant to the fungus. In addition, analyses of the plant defense response suggested the implication of a complex interplay of hormonal and signaling pathways. To get a deeper insight into this host-pathogen interaction, we first analyzed the natural variation in Arabidopsis for resistance to S. sclerotiorum. The results revealed a large variation of resistance and susceptibility in Arabidopsis, with some ecotypes, such as Ws-4, Col-0, and Rbz-1, being strongly resistant, and others, such as Shahdara, Ita-0, and Cvi-0, exhibiting an extreme susceptibility. The role of different signaling pathways in resistance was then determined by assessing the symptoms of mutants affected in the perception, production, or transduction of hormonal signals after inoculation with S. sclerotiorum. This analysis led to the conclusions that i) signaling of inducible defenses is predominantly mediated by jasmonic acid and abscisic acid, influenced by ethylene, and independent of salicylic acid; and ii) nitric oxide (NO) and reactive oxygen species are important signals required for plant resistance to S. sclerotiorum. Defense gene expression analysis supported the specific role of NO in defense activation. Topics: Abscisic Acid; Arabidopsis; Ascomycota; Brassica rapa; Cyclopentanes; Ethylenes; Host-Pathogen Interactions; Nitric Oxide; Oxylipins; Plant Diseases; Plant Leaves; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2010 |
Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production.
Lipoxygenases (LOXs) are key enzymes in the biosynthesis of oxylipins, and catalyse the formation of fatty acid hydroperoxides (HPs), which represent the first committed step in the synthesis of metabolites that function as signals and defences in plants. HPs are the initial substrates for different branches of the oxylipin pathway, and some plant species may express different LOX isoforms that supply specific branches. Here, we compare isogenic lines of the wild tobacco Nicotiana attenuata with reduced expression of NaLOX2 (irlox2) or NaLOX3 (irlox3) to determine the role of these different LOX isoforms in supplying substrates for two different pathways: green leaf volatiles (GLVs) and jasmonic acid (JA). Reduced NaLOX2 expression strongly decreased the production of GLVs without influencing the formation of JA and JA-related secondary metabolites. Conversely, reduced NaLOX3 expression strongly decreased JA biosynthesis, without influencing GLV production. The temporal expression of NaLOX2 and NaLOX3 also differed after elicitation; NaLOX3 was rapidly induced, attaining highest transcript levels within 1 h after elicitation, whereas NaLOX2 transcripts reached maximum levels after 14 h. These results demonstrate that N. attenuata channels the flux of HPs through the activities of different LOXs, leading to different direct and indirect defence responses mediating the plant's herbivore resistance. Topics: Animals; Cyclopentanes; Ethylenes; Isoenzymes; Lipoxygenase; Manduca; Molecular Sequence Data; Nicotiana; Oxylipins; Plant Leaves; Plants, Genetically Modified; Volatile Organic Compounds | 2010 |
COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light.
Plant response to stress is orchestrated by hormone signalling pathways including those activated by jasmonates (JAs) and by ethylene, both of which stunt root growth. COI1 is a JA receptor and is required for the known responses to this hormone. It was observed that the coi1 mutant, which is largely unresponsive to growth inhibition by JAs, was also partially unresponsive to growth inhibition by ethylene and by its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the light but not in the dark. Although COI1 was required for this response to ACC, other components of the JA signal perception pathway were not. Mutants selected for insensitivity to ethylene, including etr1, ein2, and ein3, showed greater ACC-induced root growth inhibition in the light than in the dark. However, the double mutants etr1;coi1, ein2;coi1, and ein3;coi1, and coi1 seedlings treated with silver ions to block the ethylene receptors showed almost complete unresponsiveness to ACC-induced root growth inhibition in the light. The light requirement for the COI1-mediated growth inhibition by ACC was for long photoperiods, and the ACC response was not abolished by mutations in the known photoreceptors. The complementation assay indicated that SCF complex assembly was not required for COI1 function in the ACC response, in contrast to the JA response. It is concluded that COI1 is required for the light-dependent, JA-independent, root growth inhibition by ethylene. Topics: Amino Acids, Cyclic; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genetic Complementation Test; Germination; Light; Mutation; Oxylipins; Phenotype; Photoperiod; Plant Roots; Protein Structure, Tertiary; Receptors, Cell Surface; Seedlings | 2010 |
Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.
As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction. Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Histone Methyltransferases; Histone-Lysine N-Methyltransferase; Histones; Indoles; Methylation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Promoter Regions, Genetic; RNA, Plant; Thiazoles | 2010 |
Morphological and molecular analyses of host and nonhost interactions involving barley and wheat and the covered smut pathogen Ustilago hordei.
Ustilago hordei interactions on coleoptiles of barley host cultivars Odessa (compatible), Hannchen (incompatible, carrying the Ruh1 resistance gene), and on nonhost Neepawa wheat were studied using light and fluorescent microscopy. Autofluorescence, mainly caused by callose accumulation, was more rapidly expressed in nonhost wheat at 30 to 72 h compared with the incompatible reaction between 72 and 144 h. Microarray results demonstrated that more than half of the 893 differentially regulated genes were observed in Neepawa; of these genes, 45% fell into the defense- and stress-related classes in Neepawa compared with 25 and 37% in Odessa and Hannchen, respectively. Their expression coincided with the early morphological defense responses observed and were associated with the jasmonic acid and ethylene (JA/ET) signaling pathway. Expression patterns in Odessa and Hannchen were similar, involving fewer genes and coinciding with later morphological defense responses of these varieties. Although no visible hypersensitive response was apparent in Hannchen or Neepawa, specific upregulation of hypersensitivity-related proteins was observed, such as beta-VPE at 48 h. Expression levels of the callose synthase gene were closely associated with callose accumulation. Differential responses in defense-gene expression among disease reaction types included upregulation of PR-1.1b and downregulation of a nonspecific lipid transfer protein in the incompatible and compatible interactions, respectively. Transcript levels of EDS1 and PAD4, involved in both basal resistance and R-mediated resistance to avirulent pathogens, were up-regulated during both nonhost and Ruh1-mediated resistance. Application of methyl-jasmonate, salicylic acid and ET to leaves revealed that only PR1.1b is strongly up-regulated by all three compounds, while the majority of the defense-related genes are only slightly up-regulated by these signaling compounds. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hordeum; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Plant Proteins; Protein Array Analysis; Salicylic Acid; Triticum; Ustilago | 2010 |
The role of jasmonic acid and ethylene crosstalk in direct defense of Nicotiana attenuata plants against chewing herbivores.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling, or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves. Topics: Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Larva; Manduca; Mastication; Models, Biological; Nicotiana; Oxylipins; Signal Transduction | 2010 |
Illuminating COI1: a component of the Arabidopsis jasomonate receptor complex also interacts with ethylene signaling.
A significant portion of developmental and environmental responses in plants is mediated through phytohormone signaling, often if not always integrated with outputs from other signals. We have recently shown that CORONATINE INSENSITIVE1 (COI1), a component of a jasmonate receptor complex, is involved in ethylene-induced root growth inhibition of Arabidopsis, in the light. This response is neither due to elevated levels of jasmonates in response to ethylene treatment nor dependent on the known jasmonate signal-transduction cascade, except that it requires COI1. Further, we have shown that the ethylene-induced COI1-mediated pathway functions in parallel with, and additively to, the conventional ethylene signaling pathway, and that the light requirement is primarily for long photoperiods. This unexpected interaction of COI1 with ethylene signaling has also been extended to other developmental processes including germination and fertility. This addendum summarizes the earlier findings with some new insights, and describes and speculates on the mechanisms by which these processes are regulated, in the context of the interaction between COI1 and ethylene signaling. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Oxylipins; Receptors, Cell Surface; Signal Transduction | 2010 |
ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses.
Pathogen associated molecular patterns (PAMPs) are signals detected by plants that activate basal defenses. One of these PAMPs is chitin, a carbohydrate present in the cell walls of fungi and in insect exoskeletons. Previous work has shown that chitin treatment of Arabidopsis thaliana induced defense-related genes in the absence of a pathogen and that the response was independent of the salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling pathways. One of these genes is ATL9 ( = ATL2G), which encodes a RING zinc-finger like protein. In the current work we demonstrate that ATL9 has E3 ubiquitin ligase activity and is localized to the endoplasmic reticulum. The expression pattern of ATL9 is positively correlated with basal defense responses against Golovinomyces cichoracearum, a biotrophic fungal pathogen. The basal levels of expression and the induction of ATL9 by chitin, in wild type plants, depends on the activity of NADPH oxidases suggesting that chitin-mediated defense response is NADPH oxidase dependent. Although ATL9 expression is not induced by treatment with known defense hormones (SA, JA or ET), full expression in response to chitin is compromised slightly in mutants where ET- or SA-dependent signaling is suppressed. Microarray analysis of the atl9 mutant revealed candidate genes that appear to act downstream of ATL9 in chitin-mediated defenses. These results hint at the complexity of chitin-mediated signaling and the potential interplay between elicitor-mediated signaling, signaling via known defense pathways and the oxidative burst. Topics: Amino Acid Sequence; Arabidopsis; Chitin; Cyclopentanes; Endoplasmic Reticulum; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Molecular Sequence Data; Mutation; NADPH Oxidases; Oxylipins; Salicylic Acid; Sequence Homology, Amino Acid; Signal Transduction; Ubiquitin-Protein Ligases; Zinc Fingers | 2010 |
Herbivore-induced jasmonic acid bursts in leaves of Nicotiana attenuata mediate short-term reductions in root growth.
Root growth in Nicotiana attenuata is transiently reduced after application of oral secretions (OS) of Manduca sexta larvae to wounds in leaves. Feeding of M. sexta or OS elicitation is known to result in jasmonic acid (JA) and ethylene bursts, and activates a suite of defence responses. Because both plant hormones are known to strongly reduce root growth, their activation might account for the observed reduction of root growth following herbivory. To test this hypothesis, we measured primary root growth with digital image sequence processing at high temporal resolution in antisense-lipoxygenase 3 (asLOX3) and inverted repeat-coronatin-insensitive 1 (irCOI1) seedlings which are impaired in JA biosynthesis and perception, respectively, and wild-type (WT) seedlings. Higher root growth rates in irCOI1 compared with WT were observed after OS elicitation. The dynamics of wound-induced root growth reduction coincide with the dynamics of root growth reduction induced by external application of methyl JA. In an experiment with 1-methylcyclopropen (1-MCP), a potent ethylene receptor blocker, no wounding-specific difference between growth of 1-MCP-treated plants and non-treated plants was observed, suggesting that wound-induced endogenous JA and not ethylene mediates the wounding-specific reduction in root growth. Yet, inhibiting the ethylene response by applying 1-MCP led to markedly increased root growth compared with that of control plants, indicating that ethylene normally suppresses plant growth in N. attenuata seedlings. Topics: Animals; Cyclopentanes; Cyclopropanes; Ethylenes; Gene Expression Regulation, Plant; Manduca; Nicotiana; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Roots | 2009 |
Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling.
Heterotrimeric G proteins are involved in the defense response against necrotrophic fungi in Arabidopsis. In order to elucidate the resistance mechanisms involving heterotrimeric G proteins, we analyzed the effects of the Gβ (subunit deficiency in the mutant agb1-2 on pathogenesis-related gene expression, as well as the genetic interaction between agb1-2 and a number of mutants of established defense pathways. Gβ-mediated signaling suppresses the induction of salicylic acid (SA)-, jasmonic acid (JA)-, ethylene (ET)- and abscisic acid (ABA)-dependent genes during the initial phase of the infection with Fusarium oxysporum (up to 48 h after inoculation). However, at a later phase it enhances JA/ET-dependent genes such as PDF1.2 and PR4. Quantification of the Fusarium wilt symptoms revealed that Gβ- and SA-deficient mutants were more susceptible than wild-type plants, whereas JA- and ET-insensitive and ABA-deficient mutants demonstrated various levels of resistance. Analysis of the double mutants showed that the Gβ-mediated resistance to F. oxysporum and Alternaria brassicicola was mostly independent of all of the previously mentioned pathways. However, the progressive decay of agb1-2 mutants was compensated by coi1-21 and jin1-9 mutations, suggesting that at this stage of F. oxysporum infection Gβ acts upstream of COI1 and ATMYC2 in JA signaling. Topics: Abscisic Acid; Alternaria; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Defensins; Disease Resistance; Ethylenes; Fusarium; Genes, Plant; GTP-Binding Protein beta Subunits; Heterotrimeric GTP-Binding Proteins; Host-Pathogen Interactions; Mutation; Oxylipins; Plant Diseases; Plant Leaves; Salicylic Acid; Signal Transduction; Time Factors | 2009 |
Global gene expression profiling during Medicago truncatula-Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development.
Phymatotrichopsis omnivora (Duggar) Hennebert causes a destructive root rot in cotton, alfalfa (Medicago sativa), and many other dicot species. No consistently effective control measures or resistant host germplasm for Phymatotrichum root rot (PRR) are known. The relative genetic intractability of cotton and alfalfa precludes their use as model pathosystem hosts for P. omnivora. Therefore, we used the model legume M. truncatula and its available genetic and genomic resources to investigate PRR. Confocal imaging of P. omnivora interactions with M. truncatula roots revealed that the mycelia do not form any specialized structures for penetration and mainly colonize cortical cells and, eventually, form a mycelial mantle covering the root's surfaces. Expression profiling of M. truncatula roots infected by P. omnivora identified several upregulated genes, including the pathogenesis-related class I and class IV chitinases and genes involved in reactive oxygen species generation and phytohormone (jasmonic acid and ethylene) signaling. Genes involved in flavonoid biosynthesis were induced (2.5- to 10-fold over mock-inoculated controls) at 3 days postinoculation (dpi) in response to fungal penetration. However, the expression levels of flavonoid biosynthesis genes returned to the basal levels with the progress of the disease at 5 dpi. These transcriptome results, confirmed by real-time quantitative polymerase chain reaction analyses, showed that P. omnivora apparently evades induced host defenses and may downregulate phytochemical defenses at later stages of infection to favor pathogenesis. Topics: Ascomycota; Cyclopentanes; Ethylenes; Flavonoids; Gene Expression Profiling; Gene Expression Regulation, Plant; Host-Pathogen Interactions; Medicago truncatula; Microscopy, Confocal; Microscopy, Electron, Scanning; Oligonucleotide Array Sequence Analysis; Oxylipins; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction | 2009 |
Phytohormone-based activity mapping of insect herbivore-produced elicitors.
In response to insect attack, many plants exhibit dynamic biochemical changes, resulting in the induced production of direct and indirect defenses. Elicitors present in herbivore oral secretions are believed to positively regulate many inducible plant defenses; however, little is known about the specificity of elicitor recognition in plants. To investigate the phylogenic distribution of elicitor activity, we tested representatives from three different elicitor classes on the time course of defense-related phytohormone production, including ethylene (E), jasmonic acid (JA), and salicylic acid, in a range of plant species spanning angiosperm diversity. All families examined responded to at least one elicitor class with significant increases in E and JA production within 1 to 2 h after treatment, yet elicitation activity among species was highly idiosyncratic. The fatty-acid amino acid conjugate volicitin exhibited the widest range of phytohormone and volatile inducing activity, which spanned maize (Zea mays), soybean (Glycine max), and eggplant (Solanum melongena). In contrast, the activity of inceptin-related peptides, originally described in cowpea (Vigna unguiculata), was limited even within the Fabaceae. Similarly, caeliferin A16:0, a disulfooxy fatty acid from grasshoppers, was the only elicitor with demonstrable activity in Arabidopsis thaliana. Although precise mechanisms remain unknown, the unpredictable nature of elicitor activity between plant species supports the existence of specific receptor-ligand interactions mediating recognition. Despite the lack of an ideal plant model for studying the action of numerous elicitors, E and JA exist as highly conserved and readily quantifiable markers for future discoveries in this field. Topics: alpha-Linolenic Acid; Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Glutamine; Insecta; Magnoliopsida; Oxylipins; Plant Growth Regulators; Plant Physiological Phenomena; Species Specificity | 2009 |
Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana.
* The cpr5-1 Arabidopsis thaliana mutant exhibits constitutive activation of salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signalling pathways and displays enhanced tolerance of heat stress (HS). * cpr5-1 crossed with jar1-1 (a JA-amino acid synthetase) was compromised in basal thermotolerance, as were the mutants opr3 (mutated in OPDA reductase3) and coi1-1 (affected in an E3 ubiquitin ligase F-box; a key JA-signalling component). In addition, heating wild-type Arabidopsis led to the accumulation of a range of jasmonates: JA, 12-oxophytodienoic acid (OPDA) and a JA-isoleucine (JA-Ile) conjugate. Exogenous application of methyl jasmonate protected wild-type Arabidopsis from HS. * Ethylene was rapidly produced during HS, with levels being modulated by both JA and SA. By contrast, the ethylene mutant ein2-1 conferred greater thermotolerance. * These data suggest that JA acts with SA, conferring basal thermotolerance while ET may act to promote cell death. Topics: Adaptation, Physiological; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Heat-Shock Response; Membrane Proteins; Mutation; Nucleotidyltransferases; Oxylipins; Phenotype; RNA, Messenger; Salicylic Acid; Signal Transduction; Temperature | 2009 |
Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis.
Pathogen infection leads to the activation of defense signaling networks in plants. To study these networks and the relationships between their components, we introduced various defense mutations into acd6-1, a constitutive gain-of-function Arabidopsis mutant that is highly disease resistant. acd6-1 plants show spontaneous cell death, reduced stature, and accumulate high levels of camalexin (an anti-fungal compound) and salicylic acid (SA; a signaling molecule). Disruption of several defense genes revealed that in acd6-1, SA levels/signaling were positively correlated with the degree of disease resistance and defense gene expression. Salicylic acid also modulates the severity of cell death. However, accumulation of camalexin in acd6-1 is largely unaffected by reducing the level of SA. In addition, acd6-1 shows ethylene- and jasmonic acid-mediated signaling that is antagonized and therefore masked by the presence of SA. Mutant analysis revealed a new relationship between the signaling components NPR1 and PAD4 and also indicated that multiple defense pathways were required for phenotypes conferred by acd6-1. In addition, our data confirmed that the size of acd6-1 was inversely correlated with SA levels/signaling. We exploited this unique feature of acd6-1 to identify two genes disrupted in acd6-1 suppressor (sup) mutants: one encodes a known SA biosynthetic component (SID2) and the other encodes an uncharacterized putative metalloprotease (At5g20660). Taken together, acd6-1 is a powerful tool not only for dissecting defense regulatory networks but also for discovering novel defense genes. Topics: Ankyrins; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Genes, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Mutagenesis, Insertional; Mutation; Oxylipins; Salicylic Acid; Signal Transduction; Thiazoles | 2009 |
ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are Polygalacturonases required for cell separation during reproductive development in Arabidopsis.
Cell separation is thought to involve degradation of pectin by several hydrolytic enzymes, particularly polygalacturonase (PG). Here, we characterize an activation tagging line with reduced growth and male sterility caused by increased expression of a PG encoded by QUARTET2 (QRT2). QRT2 is essential for pollen grain separation and is part of a small family of three closely related endo-PGs in the Arabidopsis thaliana proteome, including ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2. Functional assays and complementation experiments confirm that ADPG1, ADPG2, and QRT2 are PGs. Genetic analysis demonstrates that ADPG1 and ADPG2 are essential for silique dehiscence. In addition, ADPG2 and QRT2 contribute to floral organ abscission, while all three genes contribute to anther dehiscence. Expression analysis is consistent with the observed mutant phenotypes. INDEHISCENT (IND) encodes a putative basic helix-loop-helix required for silique dehiscence, and we demonstrate that the closely related HECATE3 (HEC3) gene is required for normal seed abscission and show that IND and HEC3 are required for normal expression of ADPG1 in the silique dehiscence zone and seed abscission zone, respectively. We also show that jasmonic acid and ethylene act together with abscisic acid to regulate floral organ abscission, in part by promoting QRT2 expression. These results demonstrate that multiple cell separation events, including both abscission and dehiscence, require closely related PG genes. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA, Bacterial; Ethylenes; Flowers; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Genetic Complementation Test; Mutagenesis, Insertional; Mutation; Oxylipins; Plant Infertility; Plants, Genetically Modified; Pollen; Polygalacturonase; RNA, Plant | 2009 |
Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling.
The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes. Topics: Acetates; Amino Acids, Cyclic; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Models, Biological; Oxylipins; Plant Diseases; Receptors, Cell Surface; Salicylic Acid; Signal Transduction | 2009 |
Silencing the hydroxyproline-rich glycopeptide systemin precursor in two accessions of Nicotiana attenuata alters flower morphology and rates of self-pollination.
Systemins and their hydroxyproline-rich glycopeptide systemin (ppHS) subfamily members are known to mediate antiherbivore defenses in some solanaceous taxa but not others; functions other than in defense remain largely unexplored. Nicotiana attenuata's ppHS is known not to function in herbivore defense. NappHS transcripts are abundant in flowers, particularly in pistils, and when two N. attenuata accessions from Utah and Arizona were transformed to silence NappHS by RNAi (IRsys), seed capsule production and seed number per capsule were reduced in both accessions. These reductions in reproductive performance could not be attributed to impaired pollen or ovule viability; hand-pollination of all IRsys lines of both accessions restored seed production per capsule to levels found in wild-type plants. Rather, changes in flower morphology that decreased the efficiency of self-pollination are likely responsible: IRsys plants of both accessions have flowers with pistils that protrude beyond their anthers. Because these changes in flower morphology are reminiscent of CORONATINE-INSENSITIVE1-silenced N. attenuata plants, we measured jasmonates (JAs) and their biosynthetic transcripts in different floral developmental stages, and found levels of JA-isoleucine (Ile)/leucine and threonine deaminase transcripts, which are abundant in wild-type pistils, to be significantly reduced in IRsys buds and flowers. Threonine deaminase supplies Ile for JA-Ile biosynthesis, and we propose that ppHS mediates JA signaling during flower development and thereby changes flower morphology. These results suggest that the function of ppHS family members in N. attenuata may have diversified to modulate flower morphology and thereby outcrossing rates in response to biotic or abiotic stresses. Topics: Abscisic Acid; Arizona; Cyclopentanes; Ethylenes; Feeding Behavior; Flowers; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Silencing; Genes, Plant; Glycopeptides; Hydroxyproline; Indoleacetic Acids; Nicotiana; Oxylipins; Peptides; Pollination; Protein Precursors; RNA, Messenger; Seeds; Utah | 2009 |
Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances.
Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Quantitative assessment of fungal colonization in the host was carried out using quantitative polymerase chain reaction (qPCR) and GUS expression analyses, to further characterize RLM1 resistance and the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in disease development. Additional assessments of A. thaliana mutants were performed to expand our understanding of this pathosystem. Resistance responses such as lignification and the formation of vascular plugs were found to occur in an RLM1-dependent manner, in contrast to the RLM1-independent increase in reactive oxygen species at the stomata and hydathodes. Analyses of mutants defective in hormone signaling in the camalexin-free rlm1(Ler)pad3 background revealed a significant influence of JA and ET on symptom development and pathogen colonization. The overall results indicate that the defense responses of primary importance induced by RLM1 are all associated with physical barriers, and that responses of secondary importance involve complex cross-talk among SA, JA and ET. Our observations further suggest that ET positively affects fungal colonization. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Fungi; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Indoles; Lignin; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Thiazoles; Virulence Factors | 2009 |
Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium.
Cadmium (Cd) toxicity has been widely studied in different plant species; however, the mechanism involved in its toxicity as well as the cell response against the metal have not been well established. In this work, using pea (Pisum sativum) plants, we studied the effect of Cd on antioxidants, reactive oxygen species (ROS), and nitric oxide (NO) metabolism of leaves using different cellular, molecular, and biochemical approaches. The growth of pea plants with 50 mum CdCl(2) affected differentially the expression of superoxide dismutase (SOD) isozymes at both transcriptional and posttranscriptional levels, giving rise to a SOD activity reduction. The copper/zinc-SOD down-regulation was apparently due to the calcium (Ca) deficiency induced by the heavy metal. In these circumstances, the overproduction of the ROS hydrogen peroxide and superoxide could be observed in vivo by confocal laser microscopy, mainly associated with vascular tissue, epidermis, and mesophyll cells, and the production of superoxide radicals was prevented by exogenous Ca. On the other hand, the NO synthase-dependent NO production was strongly depressed by Cd, and treatment with Ca prevented this effect. Under these conditions, the pathogen-related proteins PrP4A and chitinase and the heat shock protein 71.2, were up-regulated, probably to protect cells against damages induced by Cd. The regulation of these proteins could be mediated by jasmonic acid and ethylene, whose contents increased by Cd treatment. A model is proposed for the cellular response to long-term Cd exposure consisting of cross talk between Ca, ROS, and NO. Topics: Cadmium; Calcium; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Models, Biological; Nitric Oxide; Oxylipins; Pisum sativum; Plant Leaves; Plant Proteins; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Superoxide Dismutase | 2009 |
Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1.
The cell wall protein fraction (CWP) is purified from the non-pathogenic biocontrol agent Pythium oligandrum and is composed of two glycoproteins (POD-1 and POD-2), which are structurally similar to class III elicitins. In tomato plants treated with CWP, jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways are activated, and resistance to Ralstonia solanaceraum is enhanced. To dissect CWP-induced defense mechanisms, we investigated defense gene expression and resistance to bacterial pathogens in Arabidopsis thaliana ecotype Col-0 treated with CWP. When the leaves of Col-0 were infiltrated with CWP, neither visible necrosis nor salicylic acid (SA)-responsive gene (PR-1 and PR-5) expression was induced. In contrast, JA-responsive gene (PDF1.2 and JR2) expression was up-regulated and the resistance to R. solanaceraum and Pseudomonas syringae pv. tomato DC3000 was enhanced in response to CWP. Such CWP-induced defense responses were completely compromised in CWP-treated coi1-1 and jar1-1 mutants with an impaired JA signaling pathway. The induction of defense-related gene expression after CWP treatment was partially compromised in ET-insensitive ein2-1 mutants, but not in SA signaling mutants or nahG transgenic plants. Global gene expression analysis using cDNA array also suggested that several other JA- and ET-responsive genes, but not SA-responsive genes, were up-regulated in response to CWP. Further analysis of CWP-induced defense responses using another eight mutants with impaired defense signaling pathways indicated that, interestingly, the induction of JA-responsive gene expression and enhanced resistance to two bacterial pathogens in response to CWP were completely compromised in rar1-1, rar1-21, sgt1a-1, sgt1b (edm1) and npr1-1 mutants. Thus, the CWP-induced defense system appears to be regulated by JA-mediated and SGT1-, RAR1- and NPR1-dependent signaling pathways. Topics: Arabidopsis; Arabidopsis Proteins; Carrier Proteins; Cell Wall; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Glucosyltransferases; Intracellular Signaling Peptides and Proteins; Nucleotidyltransferases; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Plants, Genetically Modified; Pseudomonas syringae; Pythium; Ralstonia; RNA, Plant; Salicylic Acid; Signal Transduction | 2009 |
Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells.
Auxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA-NAA-treated cells. The systematic gene expression analysis revealed that NAA promoted the expression of genes related to auxin signaling and transcription factors that are known to be key regulators of differentiation of procambial and xylem precursor cells. NAA also promoted the expression of genes related to biosynthesis and metabolism of other plant hormones, such as cytokinin, gibberellin and brassinosteroid. Interestingly, detailed analysis showed that NAA rapidly induces the expression of auxin carrier gene homologues. It suggested a positive feedback loop for auxin-regulating vascular differentiation. Based on these results, we discuss the auxin function in early processes of transdifferentiation into TEs. Topics: Abscisic Acid; Asteraceae; Brassinosteroids; Carrier Proteins; Cell Transdifferentiation; Cells, Cultured; Cholestanols; Cluster Analysis; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gibberellins; Indoleacetic Acids; Molecular Sequence Data; Naphthaleneacetic Acids; Oligonucleotide Array Sequence Analysis; Oxidoreductases; Oxylipins; Phylogeny; Phytosterols; Plant Growth Regulators; Plant Leaves; Plant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Steroids, Heterocyclic; Xylem | 2009 |
Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2.
Elevated levels of CO(2), equivalent to those projected to occur under global climate change scenarios, increase the susceptibility of soybean foliage to herbivores by down-regulating the expression of genes related to the defense hormones jasmonic acid and ethylene; these in turn decrease the gene expression and activity of cysteine proteinase inhibitors (CystPIs), the principal antiherbivore defenses in foliage. To examine the effects of elevated CO(2) on the preference of Japanese beetle (JB; Popillia japonica) for leaves of different ages within the plant, soybeans were grown at the SoyFACE facility at the University of Illinois at Urbana-Champaign. When given a choice, JB consistently inflicted greater levels of damage on older leaves than on younger leaves, and there was a trend for a greater preference for young leaves grown under elevated CO(2) compared to those grown under ambient CO(2). More heavily damaged older leaves and those grown under elevated CO(2) had reduced CystPI activity, and JB that consumed leaves with lower CystPI activity had correspondingly greater gut proteinase activity. Younger leaves with higher CystPI activity and photosynthetic rates may contribute disproportionately to plant fitness and are more protected against herbivore attack than older foliage. Cysteine proteinase inhibitors are potent defenses against JB, and the effectiveness of this defense is modulated by growth under elevated CO(2) as well as leaf position. Topics: Analysis of Variance; Animals; Atmosphere; Carbon Dioxide; Choice Behavior; Coleoptera; Cyclopentanes; Cysteine Proteinase Inhibitors; Ethylenes; Gene Expression Regulation, Plant; Glycine max; Illinois; Oxylipins; Plant Leaves | 2009 |
Hormone (dis)harmony moulds plant health and disease.
Diseased plants often display phenotypes consistent with hormone perturbations. We review recent data that have revealed roles in plant-microbe interactions for cellular components and signaling molecules that previously were associated only with hormone signaling. A better understanding of cross-talk between hormonal and defense signaling pathways should reveal new potential targets for microbial effectors that attenuate host resistance mechanisms. Topics: Abscisic Acid; Bacteria; Cyclopentanes; Ethylenes; Fungi; Gene Expression Regulation, Plant; Gibberellins; Host-Pathogen Interactions; Indoleacetic Acids; Oomycetes; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants; Repressor Proteins; Salicylic Acid; Signal Transduction | 2009 |
Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling.
Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OS(Se) and OS(Ms)) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OS(Se) had enhanced glucose oxidase activity (but not beta-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OS(Ms)-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OS(Ms)-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA. Topics: Amino Acids; Animals; Cyclopentanes; Ethylenes; Fatty Acids; Feeding Behavior; Glucose Oxidase; Hydrogen Peroxide; Larva; Manduca; Nicotiana; Oxylipins; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Spodoptera | 2009 |
Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate, ethylene and Xanthomonas.
Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were identified. Conserved amino acid residues and phylogeny reconstruction using the AP2 conserved domain suggest that the classification into 10 major groups used for Arabidopsis and rice is applicable to the cotton ERF family. Based on in silico studies, we predict that group IX ERF genes in cotton are involved in jasmonate (JA), ethylene (ET) and pathogen responses. To test this hypothesis, we analysed the transcript profiles of the group IXa subfamily in the regulation of specific resistance to Xanthomonas campestris pathovar malvacearum. The expression of four members of group IXa was induced on challenge with X. campestris pv. malvacearum. Furthermore, the expression of several ERF genes of group IXa was induced synergistically by JA in combination with ET, suggesting that the encoded ERF proteins may play key roles in the integration of both signals to activate JA- and ET-dependent responses. Topics: Amino Acid Sequence; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Genetic Variation; Gossypium; Molecular Sequence Data; Oxylipins; Phylogeny; Plant Proteins; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Transcription Factors; Xanthomonas | 2009 |
Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana.
Myzus persicae (green peach aphid) feeding on Arabidopsis thaliana induces a defence response, quantified as reduced aphid progeny production, in infested leaves but not in other parts of the plant. Similarly, infiltration of aphid saliva into Arabidopsis leaves causes only a local increase in aphid resistance. Further characterization of the defence-eliciting salivary components indicates that Arabidopsis recognizes a proteinaceous elicitor with a size between 3 and 10 kD. Genetic analysis using well-characterized Arabidopsis mutants shows that saliva-induced resistance against M. persicae is independent of the known defence signalling pathways involving salicylic acid, jasmonate and ethylene. Among 78 Arabidopsis genes that were induced by aphid saliva infiltration, 52 had been identified previously as aphid-induced, but few are responsive to the well-known plant defence signalling molecules salicylic acid and jasmonate. Quantitative PCR analyses confirm expression of saliva-induced genes. In particular, expression of a set of O-methyltransferases, which may be involved in the synthesis of aphid-repellent glucosinolates, was significantly up-regulated by both M. persicae feeding and treatment with aphid saliva. However, this did not correlate with increased production of 4-methoxyindol-3-ylmethylglucosinolate, suggesting that aphid salivary components trigger an Arabidopsis defence response that is independent of this aphid-deterrent glucosinolate. Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Glucosinolates; Indoles; Methyltransferases; Oligonucleotide Array Sequence Analysis; Oxylipins; RNA, Plant; Salicylic Acid; Saliva; Signal Transduction | 2009 |
Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene.
We report on the characterization of the interaction between reactive oxygen species signalling and abscisic acid (ABA)-mediated gene network in ozone (O(3)) stress response. To identify the stress-related signalling pathways and possible cross-talk controlled by an ABA-negative regulator, the protein phosphatase 2C abscisic acid insensitive1 (ABI1), we performed a genome-wide transcription profiling of O(3)-treated wild-type and ABI1 knockout (abi1td) plants. In addition, to better understand ABA signalling and the interactions between stress response pathways, we performed a microarray analysis of drought-treated plants. Functional categorization of the identified genes showed that ABI1 is involved in the modulation of several cellular processes including metabolism, transport, development, information pathways and variant splicing. Comparisons with available transcriptome data sets revealed the extent of ABI1 involvement in both ABA-dependent and ABA-independent gene expression. Furthermore, in O(3) stress the ABA hypersensitivity of abi1td resulted in a significant reduction of the ABA level, ethylene (ET) over-production and O(3) tolerance. Moreover, the physical interaction of ABI1 with ACC synthase2 and ACC synthase6 was shown. We provide a model explaining how ABI1 can regulate both ABA and ET biosynthesis. Altogether, our findings indicate that ABI1 plays the role of a general signal transducer linking ABA and ET biosynthesis as well as signalling pathways to O(3) stress tolerance. Topics: Abscisic Acid; Alternative Splicing; Arabidopsis; Arabidopsis Proteins; Biological Transport; Cyclopentanes; Droughts; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Mutagenesis, Insertional; Mutation; Oxylipins; Ozone; Phenotype; Phosphoprotein Phosphatases; Protein Phosphatase 2C; Regulon; Reproducibility of Results; Signal Transduction; Stress, Physiological; Transcription, Genetic | 2009 |
Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis.
Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. In higher plants, autophagy defects result in early senescence and excessive immunity-related programmed cell death (PCD) irrespective of nutrient conditions; however, the mechanisms by which cells die in the absence of autophagy have been unclear. Here, we demonstrate a conserved requirement for salicylic acid (SA) signaling for these phenomena in autophagy-defective mutants (atg mutants). The atg mutant phenotypes of accelerated PCD in senescence and immunity are SA signaling dependent but do not require intact jasmonic acid or ethylene signaling pathways. Application of an SA agonist induces the senescence/cell death phenotype in SA-deficient atg mutants but not in atg npr1 plants, suggesting that the cell death phenotypes in the atg mutants are dependent on the SA signal transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. We also show that autophagy is induced by the SA agonist. These findings imply that plant autophagy operates a novel negative feedback loop modulating SA signaling to negatively regulate senescence and immunity-related PCD. Topics: Arabidopsis; Arabidopsis Proteins; Autophagy; Autophagy-Related Protein 5; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Oxylipins; Phosphoric Monoester Hydrolases; Plant Growth Regulators; RNA, Plant; Salicylic Acid; Signal Transduction | 2009 |
Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.
Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis-Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria. Topics: Agrobacterium tumefaciens; Arabidopsis; Cyclopentanes; DNA, Bacterial; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Hydrogen Peroxide; Indoleacetic Acids; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Growth Regulators; Plant Tumors; RNA, Plant; Salicylic Acid; Transcriptional Activation | 2009 |
A novel regulatory system in plants involving medium-chain fatty acids.
Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals. Topics: Alkanes; Arabidopsis; Cyclopentanes; Detergents; Ethylenes; Extracellular Space; Fatty Acids; Gas Chromatography-Mass Spectrometry; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; Hydrogen-Ion Concentration; Mutation; Nicotiana; Oxylipins; Plant Leaves; Plant Proteins; Plants; Polysorbates; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Solanum lycopersicum; Up-Regulation | 2009 |
Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP.
In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression. Topics: Acetates; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Growth Regulators; Plant Proteins; Signal Transduction; Zea mays | 2009 |
Inhibitory effect of jasmonic acid and ethylene on epicotyl growth and bud induction in the maritime pine, Pinus pinaster Soland. in ait.
Two independent parameters, epicotyl height (cm) and number of induced buds were studied on Pinus pinaster explants to analyse the effects of three phytohormones (6-benzylaminopurine, jasmonic acid, ethylene) which were combined or not in 11 different treatments. Epicotyle length diminished significantly in relation to the control medium (medium without exogen phytohormones) in presence of jasmonic acid, 6-benzylaminopurine or Ethephon (which is converted to ethylene in plants) in any of treatments. Concentrations of 100 microM of jasmonic acid and Ethephon had a greater inhibitory effect than the treatments with 10 microM. In addition to that, jasmonic acid was a stronger inhibitor than Ethephon in any of the tried combinations. There were no significant differences between the control treatment and the treatments with only 10 microM of jasmonic acid or Ethephon. However, 10 microM 6-benzylaminopurine induced bud formation. The different combinations of 6-benzylaminopurine with jasmonic acid and Ethephon showed that concentrations of 10 to 100 microM did not affect the number of induced buds. Jasmonic acid had an inhibitory effect which Ethephon only showed when combined with 100 microM of jasmonic acid and 10 microM of 6-benzylaminopurine. Three response groups were defined by cluster analysis: group 1 produced the greatest mean number of buds (4 to 5) and a mean epicotyl growth of 1 to 1.5 cm; group 2 produced 2 to 4 buds and a mean growth of 0.5 to 1.2 cm; group 3 produced only one bud and a mean epicotyl length of 1.2 to 2 cm. Topics: Benzyl Compounds; Cyclopentanes; Ethylenes; Organophosphorus Compounds; Oxylipins; Pinus; Plant Components, Aerial; Plant Growth Regulators; Purines | 2009 |
Symbiosis between Nicotiana attenuata and Glomus intraradices: ethylene plays a role, jasmonic acid does not.
Phytohormones are thought to mediate plant-arbuscular mycorrhizal (AM) interactions. To explore the role of phytohormones in the interaction between Nicotiana attenuata and Glomus intraradices, we analysed levels of jasmonic acid (JA) and its amino acid conjugate JA-isoleucine/JA-leucine (JA-Ile), salicylic acid (SA) and ethylene in either infected or non-infected N. attenuata wild-type (WT) plants growing in soils that mimic the nutrient supply rates found in the plant's native environment. Under these conditions, the infection decreases plant growth and reproductive performance. Levels of JA, JA-Ile and SA did not change upon infection, but ethylene release was slightly decreased. Transgenic N. attenuata plants defective in JA signalling (aslox3 and ircoi1) did not differ significantly in growth or reproductive performance compared with infected WT. Furthermore, no difference in infection rates could be observed. Transgenic plants unable to produce (iraco) or perceive (etr1) ethylene showed significantly larger decreases in growth and number of seed capsules produced between infected and non-infected plants compared with WT plants. We conclude that ethylene, rather than JA, signalling plays a role in the interaction between N. attenuata and AM, from which the plant does not realize a fitness benefit. Topics: Cyclopentanes; DNA, Fungal; Ethylenes; Genotype; Mycorrhizae; Nicotiana; Oxylipins; Plant Growth Regulators; Plant Roots; Plants, Genetically Modified; Salicylic Acid; Seeds; Soil Microbiology; Symbiosis | 2008 |
A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus.
We have used reverse genetics to identify genes involved in legume-rhizobium symbiosis in Lotus japonicus. We obtained the sequences of 20 putative transcription factors from previously reported large-scale transcriptome data. The transcription factors were classified according to their DNA binding domains and patterns of expression during the nodulation process. We identified two homologues of Medicago truncatula MtHAP2-1, which encodes a CCAAT-binding protein and has been shown to play a role in nodulation. The functions of the remaining genes in the nodulation process have not been reported. Seven genes were found to encode proteins with AP2-EREBP domains, six of which were similar to proteins that have been implicated in ethylene and/or jasmonic acid signal transduction and defense gene regulation in Arabidopsis (Arabidopsis thaliana). We identified a gene, LjERF1, that is most similar to Arabidopsis ERF1, which is up-regulated by ethylene and jasmonic acid and activates downstream defense genes. LjERF1 showed the same pattern of up-regulation in roots as Arabidopsis ERF1. The nodulation phenotype of roots that overexpressed LjERF1 or inhibited LjERF1 expression using an RNA interference construct indicated that this gene functions as a positive regulator of nodulation. We propose that LjERF1 functions as a key regulator of successful infection of L. japonicus by Mesorhizobium loti. Topics: Base Sequence; Cyclopentanes; Ethylenes; Gene Expression; Gene Expression Profiling; Gene Expression Regulation, Plant; Lotus; Medicago truncatula; Molecular Sequence Data; Multigene Family; Oligonucleotide Array Sequence Analysis; Oxylipins; Peptide Termination Factors; Phylogeny; Plant Proteins; Protein Structure, Tertiary; RNA Interference; Root Nodules, Plant; Transcription Factors; Up-Regulation | 2008 |
Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1.
The Arabidopsis (Arabidopsis thaliana) MKK1 and MKK2 mitogen-activated protein kinase kinases have been implicated in biotic and abiotic stress responses as part of a signaling cascade including MEKK1 and MPK4. Here, the double loss-of-function mutant (mkk1/2) of MKK1 and MKK2 is shown to have marked phenotypes in development and disease resistance similar to those of the single mekk1 and mpk4 mutants. Because mkk1 or mkk2 single mutants appear wild type, basal levels of MPK4 activity are not impaired in them, and MKK1 and MKK2 are in part functionally redundant in unchallenged plants. These findings are confirmed and extended by biochemical and molecular analyses implicating the kinases in jasmonate- and salicylate-dependent defense responses, mediated in part via the MPK4 substrate MKS1. In addition, transcriptome analyses delineate overlapping and specific effects of the kinases on global gene expression patterns demonstrating both redundant and unique functions for MKK1 and MKK2. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; MAP Kinase Kinase 1; MAP Kinase Kinase Kinase 1; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Mutagenesis, Insertional; Nuclear Proteins; Oxylipins; Phosphoproteins; Plant Diseases; Plant Growth Regulators; Salicylic Acid | 2008 |
Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana.
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role. Topics: Arabidopsis; Bacterial Outer Membrane Proteins; Bacterial Proteins; Cell Death; Cyclopentanes; Erwinia amylovora; Ethylenes; Glucans; Host-Pathogen Interactions; Oxylipins; Plant Diseases; Plant Leaves; Reactive Oxygen Species; Salicylic Acid | 2008 |
Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants.
Plant stress hormones, such as jasmonates (JAs) and ethylene (ET) are essential in plant defence against stress conditions. JAs are used in cosmetics and food flavouring, and the recently demonstrated anti-cancer activity of JAs highlights their potential in health protection. It reinforces the need for a better understanding of biosynthetic regulation of JAs. Which mechanisms are involved in the regulation of the biosynthesis of JAs and ET? Production of stress hormones is induced in plants after wounding or herbivore attack. ET is a gaseous compound and plant JAs are oxylipins structurally similar to prostaglandins that are induced upon inflammation or injury in mammals. Wounding activates protein phosphorylation cascades involving mitogen-activated protein kinases (MAPKs). MAPKs regulate ET production. The induction of JA biosynthesis was suggested to require MAPK activation; however the defined roles of MAPKs in JA production remain unclear. Here we will highlight the most recent findings suggesting the regulation of JA biosynthesis and ethylene production by stress activated MAPKs and phosphatases that inactivate these MAPKs. Topics: Cyclopentanes; Ethylenes; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Oxylipins; Phosphoric Monoester Hydrolases; Plant Growth Regulators; Plant Proteins; Plants | 2008 |
HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses.
The Helianthus annuus (sunflower) HAHB4 transcription factor belongs to the HD-Zip family and its transcript levels are strongly induced when sunflower plants are attacked by herbivores, mechanically damaged or treated with methyl-jasmonic acid (MeJA) or ethylene (ET). Promoter fusion analysis, in Arabidopsis and in sunflower, demonstrated that induction of HAHB4 expression by these treatments is regulated at the transcriptional level. In transiently transformed sunflower plants HAHB4 expression upregulates the transcript levels of several genes involved in JA biosynthesis and defense-related processes such as the production of green leaf volatiles and trypsin protease inhibitors (TPI). In HAHB4 sunflower overexpressing tissue, increased activities of lipoxygenase, hydroperoxide lyase and TPI are detected whereas in HAHB4-silenced tissue these activities are reduced. Transgenic Arabidopsis thaliana and Zea mays plants ecotopically expressing HAHB4 also exhibit higher transcript levels of defense-related genes and when Spodoptera littoralis or Spodoptera frugiperda larvae are placed on each species, respectively, larvae consumed less and gain less mass compared with larvae feeding on control plants. Arabidopsis plants ectopically expressing HAHB4 had higher amounts of JA, JA-isoleucine and ET compared with control plants both before and after wounding, but reduced levels of salicylic acid (SA) after wounding and bacterial infection. We conclude that HAHB4 coordinates the production of phytohormones during biotic stress responses and mechanical damage, specifically by positively regulating JA and ET production and negatively regulating ET sensitivity and SA accumulation. Topics: Animals; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gene Silencing; Genes, Plant; Helianthus; Homeodomain Proteins; Oxylipins; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Reverse Transcriptase Polymerase Chain Reaction; RNA, Plant; Signal Transduction; Spodoptera; Transcription Factors; Transformation, Genetic; Up-Regulation; Zea mays | 2008 |
GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper.
A full length cDNA clone encoding Capsicum annuum GDSL-lipase 1 (CaGL1) was isolated by microarray analysis. The expression of CaGL1 was triggered by methyl jasmonic acid (MeJA), an important signal in abiotic/biotic stress response. However, the expression of this gene was not increased by the application of salicylic acid (SA) or ethylene treatment. And, local/systemic wounding stimuli resulted in rapid accumulation of CaGL1 mRNA. However, CaGL1 was not specifically induced during the hypersensitive response upon Tobacco mosaic virus (TMV) inoculation. By using a virus-induced gene silencing (VIGS)-based reverse genetic approach, it was observed that the suppression of CaGL1 attenuates the expression of Capsicum annuumpathogenesis-related protein 4 (CaPR-4) during wound stress. However, the CaPR-4 transcript level induced by TMV was not regulated by CaGL1 expression. These results indicate that CaGL1 may be involved in signaling pathway of MeJA and/or the wound responses through CaPR-4 expression modulation. Topics: Amino Acid Sequence; Capsicum; Carboxylic Ester Hydrolases; Cyclopentanes; Down-Regulation; Ethylenes; Gene Expression Regulation, Plant; Molecular Sequence Data; Nicotiana; Oxylipins; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Transcription, Genetic | 2008 |
The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea.
Oligogalacturonides (OGs) are endogenous elicitors of defense responses released after partial degradation of pectin in the plant cell wall. We have previously shown that, in Arabidopsis (Arabidopsis thaliana), OGs induce the expression of PHYTOALEXIN DEFICIENT3 (PAD3) and increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of signaling pathways mediated by jasmonate, salicylic acid, and ethylene. Here, we illustrate that the rapid induction of the expression of a variety of genes by OGs is also independent of salicylic acid, ethylene, and jasmonate. OGs elicit a robust extracellular oxidative burst that is generated by the NADPH oxidase AtrbohD. This burst is not required for the expression of OG-responsive genes or for OG-induced resistance to B. cinerea, whereas callose accumulation requires a functional AtrbohD. OG-induced resistance to B. cinerea is also unaffected in powdery mildew resistant4, despite the fact that callose accumulation was almost abolished in this mutant. These results indicate that the OG-induced oxidative burst is not required for the activation of defense responses effective against B. cinerea, leaving open the question of the role of reactive oxygen species in elicitor-mediated defense. Topics: Arabidopsis; Botrytis; Cyclopentanes; Ethylenes; Hexuronic Acids; Mitochondrial Proteins; Oxidoreductases; Oxylipins; Plant Proteins; Respiratory Burst; Salicylic Acid; Signal Transduction | 2008 |
The chromatin remodeler SPLAYED regulates specific stress signaling pathways.
Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks. Topics: Adenosine Triphosphatases; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Botrytis; Chromatin; Chromatin Assembly and Disassembly; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Pseudomonas syringae; Signal Transduction; Stress, Physiological | 2008 |
Wounding and pathogen infection induce a chloroplast-targeted lipoxygenase in the common bean (Phaseolus vulgaris L.).
Chloroplastic LOXs are implicated in the biosynthesis of oxylipins like jasmonic acid and C6 volatiles among others. In this study, we isolated the cDNA of a novel chloroplast-targeted Phaseolus vulgaris LOX, (PvLOX6). This gene is highly induced after wounding, non-host pathogen infection, and by signaling molecules as H2O2, SA, ethylene and MeJA. The phylogenetic analysis of PvLOX6 showed that it is closely related to chloroplast-targeted LOX from potato (H1) and tomato (TomLOXC); both of them are implicated in the biosynthesis of C6 volatiles. Induction of PvLOX6 mRNA by wounding ethylene and jasmonic acid on the one side, and non-host pathogen, salicylic acid on the other indicates that common bean uses the same LOX to synthesize oxylipins in response to different stresses. Topics: Amino Acid Sequence; Base Sequence; Blotting, Southern; Chloroplasts; Cloning, Molecular; Cyclopentanes; Enzyme Induction; Ethylenes; Gene Expression Regulation, Plant; Lipoxygenase; Molecular Sequence Data; Oxylipins; Phaseolus; Phylogeny; Plant Diseases; Plant Leaves; Plant Proteins | 2008 |
Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling.
Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a beta-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11-homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-D: -xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids. Topics: Animals; Calcium Signaling; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Regulation, Plant; Larva; Medicago truncatula; Moths; Oxylipins; Plant Proteins; Terpenes | 2008 |
The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness.
When wounded or attacked by herbivores or pathogens, plants produce a blend of six-carbon alcohols, aldehydes and esters, known as C6-volatiles. Undamaged plants, when exposed to C6-volatiles, respond by inducing defense-related genes and secondary metabolites, suggesting that C6-volatiles can act as signaling molecules regulating plant defense responses. However, to date, the molecular mechanisms by which plants perceive and respond to these volatiles are unknown. To elucidate such mechanisms, we decided to isolate Arabidopsis thaliana mutants in which responses to C6-volatiles were altered. We observed that treatment of Arabidopsis seedlings with the C6-volatile E-2-hexenal inhibits root elongation. Among C6-volatiles this response is specific to E-2-hexenal, and is not dependent on ethylene, jasmonic and salicylic acid. Using this bioassay, we isolated 18 E-2-hexenal-response (her) mutants that showed sustained root growth after E-2-hexenal treatment. Here, we focused on the molecular characterization of one of these mutants, her1. Microarray and map-based cloning revealed that her1 encodes a gamma-amino butyric acid transaminase (GABA-TP), an enzyme that degrades GABA. As a consequence of the mutation, her1 plants accumulate high GABA levels in all their organs. Based on the observation that E-2-hexenal treatment induces GABA accumulation, and that high GABA levels confer resistance to E-2-hexenal, we propose a role for GABA in mediating E-2-hexenal responses. Topics: Aldehydes; Alleles; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; gamma-Aminobutyric Acid; Gene Expression Regulation, Plant; Mutation; Oxylipins; Plant Roots; Salicylic Acid; Transaminases | 2008 |
Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding.
We analyzed the interaction between Arabidopsis and western flower thrips (Frankliniella occidentalis), which are one of the most serious insect pests of cultivated plants. We focused on the function of the immunity-related plant hormones jasmonate (JA), ethylene (ET) and salicylic acid (SA) in the plant's response to thrip feeding. Expression of the marker genes for each hormone response was induced by thrip feeding in wild-type (WT) plants. Further analyses in the hormone-related mutants coi1-1 (JA insensitive), ein2-1 and ein3-1 (ET insensitive) and eds16-1 (SA deficient) suggested the importance of these hormones in the plant response to feeding. Comparative transcriptome analyses suggested a strong relationship between thrip feeding and JA treatment, but not ET or SA treatment. The JA content of WT plants was significantly increased after thrip feeding. Moreover, coi1-1, but not ein2-1, showed lower feeding tolerance against thrips than the WT. Application of JA to WT plants before thrip feeding enhanced the plants' feeding tolerance. JA modulates several defense responses in cooperation with ET, but application of the ET precursor 1-aminocyclopropane-carboxylic acid had a marked negative effect on feeding tolerance. Our results indicate that JA plays an important role in Arabidopsis in terms of response to, and tolerance against, thrip feeding. Topics: Animals; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Regulation, Plant; Hemiptera; Oxylipins; Salicylic Acid; Time Factors | 2008 |
Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes.
Root-knot nematodes (RKN) are severe pests of maize. Although lipoxygenase (LOX) pathways and their oxylipin products have been implicated in plant-nematode interactions, prior to this report there was no conclusive genetic evidence for the function of any plant LOX gene in such interactions. We showed that expression of a maize 9-LOX gene, ZmLOX3, increased steadily and peaked at 7 days after inoculation with Meloidogyne incognita RKN. Mu-insertional lox3-4 mutants displayed increased attractiveness to RKN and an increased number of juveniles and eggs. A set of jasmonic acid (JA)- and ethylene (ET)-responsive and biosynthetic genes as well as salicylic acid (SA)-dependent genes were overexpressed specifically in the roots of lox3-4 mutants. Consistent with this, levels of JA, SA, and ET were elevated in lox3-4 mutant roots, but not in leaves. Unlike wild types, in lox3-4 mutant roots, a phenylalanine ammonia lyase (PAL) gene was not RKN-inducible, suggesting a role for PAL-mediated metabolism in nematode resistance. In addition to these alterations in the defense status of roots, lox3-4 knockout mutants displayed precocious senescence and reduced root length and plant height compared with the wild type, suggesting that ZmLOX3 is required for normal plant development. Taken together, our data indicate that the ZmLOX3-mediated pathway may act as a root-specific suppressor of all three major defense signaling pathways to channel plant energy into growth processes, but is required for normal levels of resistance against nematodes. Topics: Aldehyde-Lyases; Animals; Cyclopentanes; Cytochrome P-450 Enzyme System; Disease Susceptibility; Ethylenes; Fatty Acids, Unsaturated; Gene Expression Regulation, Plant; Genes, Plant; Immunity, Innate; Intramolecular Oxidoreductases; Lipoxygenase; Models, Biological; Mutation; Nematoda; Organ Specificity; Oxylipins; Plant Diseases; Plant Roots; RNA, Messenger; Salicylic Acid; Zea mays | 2008 |
Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis.
Selenium (Se) is an essential element for many organisms, but excess Se is toxic. To better understand plant Se toxicity and resistance mechanisms, we compared the physiological and molecular responses of two Arabidopsis (Arabidopsis thaliana) accessions, Columbia (Col)-0 and Wassilewskija (Ws)-2, to selenite treatment. Measurement of root length Se tolerance index demonstrated a clear difference between selenite-resistant Col-0 and selenite-sensitive Ws-2. Macroarray analysis showed more pronounced selenite-induced increases in mRNA levels of ethylene- or jasmonic acid (JA)-biosynthesis and -inducible genes in Col-0 than in Ws-2. Indeed, Col-0 exhibited higher levels of ethylene and JA. The selenite-sensitive phenotype of Ws-2 was attenuated by treatment with ethylene precursor or methyl jasmonate (MeJA). Conversely, the selenite resistance of Col-0 was reduced in mutants impaired in ethylene or JA biosynthesis or signaling. Genes encoding sulfur (S) transporters and S assimilation enzymes were up-regulated by selenite in Col-0 but not Ws-2. Accordingly, Col-0 contained higher levels of total S and Se and of nonprotein thiols than Ws-2. Glutathione redox status was reduced by selenite in Ws-2 but not in Col-0. Furthermore, the generation of reactive oxygen species by selenite was higher in Col-0 than in Ws-2. Together, these results indicate that JA and ethylene play important roles in Se resistance in Arabidopsis. Reactive oxygen species may also have a signaling role, and the resistance mechanism appears to involve enhanced S uptake and reduction. Topics: Adaptation, Biological; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression; Oxylipins; Reactive Oxygen Species; Signal Transduction; Sodium Selenite; Sulfur; Up-Regulation | 2008 |
Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana.
Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent. Topics: Actinobacteria; Arabidopsis; Cyclopentanes; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Genes, Plant; Immunity, Innate; Mutation; Oxylipins; Pectobacterium carotovorum; Plant Diseases; RNA, Messenger; Streptomyces | 2008 |
Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death.
In the pathosystems of Turnip mosaic virus (TuMV) with Brassicaceae crops, various symptoms, including mosaic and necrosis, are observed. We previously reported a necrosis-inducing factor TuNI in Arabidopsis thaliana, a model species. In this study, we show that the necrotic symptom induced by TuNI, observed along the veins, was actually a form of defense response accompanying a hypersensitive reaction (HR)-like cell death in the veinal area. The virus is often localized in the necrotic region. The necrotic response is associated with the production of H2O2, accumulation of salicylic acid (SA), emission of ethylene, and subsequent expression of defense-related genes. Additionally, this HR-like cell death is eased or erased by a shading treatment. These features are similar to the HR-associated resistance reaction to pathogens. However, unlike HR, two phytohormones--SA and ethylene--are involved in the necrosis induction, and both SA- and ethylene-dependent pathogenesis-related genes are activated. We concluded that the veinal necrosis induced by TuMV is regulated by a complex and unique network of at least two signaling pathways, which differs from the signal transduction for the known HR-associated resistance. Topics: Arabidopsis; Cell Death; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Light; Models, Biological; Mutation; Oxylipins; Photoreceptor Cells; Plant Diseases; Plant Leaves; Plant Viruses; Salicylic Acid | 2008 |
Characterization of pea aphid resistance in Medicago truncatula.
To achieve a thorough understanding of plant-aphid interactions, it is necessary to investigate in detail both the plant and insect side of the interaction. The pea aphid (PA; Acyrthosiphon pisum) has been selected by an international consortium as the model species for genetics and genomics studies, and the model legume Medicago truncatula is a host of this aphid. In this study, we identified resistance to PA in a M. truncatula line, 'Jester', with well-characterized resistance to a closely related aphid, the bluegreen aphid (BGA; Acyrthosiphon kondoi). The biology of resistance to the two aphid species shared similarity, with resistance in both cases occurring at the level of the phloem, requiring an intact plant and involving a combination of antixenosis, antibiosis, and plant tolerance. In addition, PA resistance cosegregated in 'Jester' with a single dominant gene for BGA resistance. These results raised the possibility that both resistances may be mediated by the same mechanism. This was not supported by the results of gene induction studies, and resistance induced by BGA had no effect on PA feeding. Moreover, different genetic backgrounds containing a BGA resistance gene from the same resistance donor differ in resistance to PA. These results suggest that distinct mechanisms are involved in resistance to these two aphid species. Resistance to PA and BGA in the same genetic background in M. truncatula makes this plant an attractive model for the study of both plant and aphid components of resistant and susceptible plant-aphid interactions. Topics: Animals; Aphids; Cyclopentanes; Ethylenes; Genes, Plant; Host-Parasite Interactions; Medicago truncatula; Oxylipins; Phloem; Salicylic Acid; Species Specificity | 2008 |
Complex signaling network in regulation of adenosine 5'-phosphosulfate reductase by salt stress in Arabidopsis roots.
Sulfur-containing compounds play an important role in plant stress defense; however, only a little is known about the molecular mechanisms of regulation of sulfate assimilation by stress. Using known Arabidopsis (Arabidopsis thaliana) mutants in signaling pathways, we analyzed regulation of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase (APR), by salt stress. APR activity and mRNA levels of all three APR isoforms increased 3-fold in roots after 5 h of treatment with 150 mm NaCl. The regulation of APR was not affected in mutants deficient in abscisic acid (ABA) synthesis and treatment of the plants with ABA did not affect the mRNA levels of APR isoforms, showing that APR is regulated by salt stress in an ABA-independent manner. In mutants deficient in jasmonate, salicylate, or ethylene signaling, APR mRNA levels were increased upon salt exposure similar to wild-type plants. Surprisingly, however, APR enzyme activity was not affected by salt in these plants. The same result was obtained in mutants affected in cytokinin and auxin signaling. Signaling via gibberellic acid, on the other hand, turned out to be essential for the increase in APR mRNA by salt treatment. These results demonstrate an extensive posttranscriptional regulation of plant APR and reveal that the sulfate assimilation pathway is controlled by a complex network of multiple signals on different regulatory levels. Topics: Abscisic Acid; Adaptation, Physiological; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Nitric Oxide; Oxidoreductases Acting on Sulfur Group Donors; Oxylipins; Plant Roots; Protein Processing, Post-Translational; RNA, Messenger; Salicylic Acid; Salinity; Signal Transduction; Sodium Chloride; Sulfates | 2008 |
Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation.
Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genome, Plant; Host-Pathogen Interactions; Nucleotidyltransferases; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction | 2008 |
Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis.
Selenate is chemically similar to sulfate and can be taken up and assimilated by plants via the same transporters and enzymes. In contrast to many other organisms, selenium (Se) has not been shown to be essential for higher plants. In excess, Se is toxic and restricts development. Both Se deficiency and toxicity pose problems worldwide. To obtain better insights into the effects of Se on plant metabolism and into plant mechanisms involved in Se tolerance, the transcriptome of Arabidopsis plants grown with or without selenate was studied and Se-responsive genes identified. Roots and shoots exhibited different Se-related changes in gene regulation and metabolism. Many genes involved in sulfur (S) uptake and assimilation were upregulated. Accordingly, Se treatment enhanced sulfate levels in plants, but the quantity of organic S metabolites decreased. Transcripts regulating the synthesis and signaling of ethylene and jasmonic acid were also upregulated by Se. Arabidopsis mutants defective in ethylene or jasmonate response pathways exhibited reduced tolerance to Se, suggesting an important role for these two stress hormones in Se tolerance. Selenate upregulated a variety of transcripts that were also reportedly induced by salt and osmotic stress. Selenate appeared to repress plant development, as suggested by the downregulation of genes involved in cell wall synthesis and auxin-regulated proteins. The Se-responsive genes discovered in this study may help create plants that can better tolerate and accumulate Se, which may enhance the effectiveness of Se phytoremediation or serve as Se-fortified food. Topics: Adaptation, Physiological; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Roots; Plant Shoots; Plants, Genetically Modified; Selenium; Sulfur | 2008 |
Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit.
Peach (Prunus persica L. Batsch) was chosen as a model to shed light on the physiological role of jasmonates (JAs) during fruit ripening. To this aim, the effects of methyl jasmonate (MJ, 0.40 mM) and propyl dihydrojasmonate (PDJ, 0.22 mM), applied in planta at different fruit developmental stages, on the time-course of ethylene production and fruit quality traits were evaluated. MJ-induced changes in fruit transcriptome at harvest and the expression profiling of relevant JA-responsive genes were analysed in control and JA-treated fruit. Exogenously applied JAs affected the onset of ripening depending upon the fruit developmental stage, with PDJ being more active than MJ. Both compounds enhanced the transcription of allene oxide synthase (PpAOS1), the first specific enzyme in the biosynthesis of jasmonic acid, and altered the pattern of jasmonic acid accumulation. Microarray transcriptome profiling showed that MJ down-regulated some ripening-related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (PpACO1) and polygalacturonase (PG), and the transcriptional modulator IAA7. MJ also altered the expression of cell wall-related genes, namely pectate lyase (PL) and expansins (EXPs), and up-regulated several stress-related genes, including some of those involved in JA biosynthesis. Time-course expression profiles of PpACO1, PL, PG, PpExp1, and the transcription factor LIM confirmed the array results. Thus, in peach fruit, exogenous JAs led to a ripening delay due to an interference with ripening- and stress/defence-related genes, as reflected in the transcriptome of treated fruit at harvest. Topics: Acetates; Cyclopentanes; Ethylenes; Fruit; Gene Expression Profiling; Gene Expression Regulation, Plant; Intramolecular Oxidoreductases; Oxylipins; Prunus; Time Factors | 2008 |
Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata.
Phytohormones mediate the perception of insect-specific signals and the elicitation of defenses during insect attack. Large-scale changes in a plant's transcriptome ensue, but how these changes are regulated remains unknown. Silencing of RNA-directed RNA polymerase 1 (RdR1) makes Nicotiana attenuata highly susceptible to insect herbivores, suggesting that defense elicitation is under the direct control of small-RNAs (smRNAs). Using 454-sequencing, we characterized N. attenuata's smRNA transcriptome before and after insect-specific elicitation in wild-type (WT) and RdR1-silenced (irRdR1) plants. We predicted the targets of N. attenuata smRNAs in the genes related to phytohormone signaling (jasmonic acid, JA-Ile, and ethylene) known to mediate resistance responses, and we measured the elicited dynamics of phytohormone biosynthetic transcripts and phytohormone levels in time-course experiments with field- and glasshouse-grown plants. RdR1 silencing severely altered the induced transcript accumulation of 8 of the 10 genes, reduced JA, and enhanced ethylene levels after elicitation. Adding JA completely restored the insect resistance of irRdR1 plants. irRdR1 plants had photosynthetic rates, growth, and reproductive output indistinguishable from that of WT plants, suggesting unaltered primary metabolism. We conclude that the susceptibility of irRdR1 plants to herbivores is due to altered phytohormone signaling and that smRNAs play a central role in coordinating the large-scale transcriptional changes that occur after herbivore attack. Given the diversity of smRNAs that are elicited after insect attack and the recent demonstration of the ability of ingested smRNAs to silence transcript accumulation in lepidopteran larvae midguts, the smRNA responses of plants may also function as direct defenses. Topics: Animals; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Profiling; Gene Expression Regulation, Plant; Gene Silencing; Genotype; Larva; Manduca; MicroRNAs; Molecular Sequence Data; Nicotiana; Oxylipins; Photosynthesis; Plant Growth Regulators; Plant Proteins; RNA-Dependent RNA Polymerase; RNA, Plant; RNA, Small Interfering; Signal Transduction | 2008 |
Ethylene response factors in jasmonate signaling and defense response.
Topics: Cyclopentanes; Ethylenes; Oxylipins; Signal Transduction | 2008 |
Jasmonate signaling: toward an integrated view.
Topics: Cyclopentanes; Ethylenes; Oxylipins; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Transcription, Genetic | 2008 |
The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense.
Plant defense against pathogens depends on the action of several endogenously produced hormones, including jasmonic acid (JA) and ethylene. In certain defense responses, JA and ethylene signaling pathways synergize to activate a specific set of defense genes. Here, we describe the role of the Arabidopsis (Arabidopsis thaliana) APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain transcription factor ORA59 in JA and ethylene signaling and in defense. JA- and ethylene-responsive expression of several defense genes, including PLANT DEFENSIN1.2 (PDF1.2), depended on ORA59. As a result, overexpression of ORA59 caused increased resistance against the fungus Botrytis cinerea, whereas ORA59-silenced plants were more susceptible. Several AP2/ERF domain transcription factors have been suggested to be positive regulators of PDF1.2 gene expression based on overexpression in stably transformed plants. Using two different transient overexpression approaches, we found that only ORA59 and ERF1 were able to activate PDF1.2 gene expression, in contrast to the related proteins AtERF1 and AtERF2. Our results demonstrate that ORA59 is an essential integrator of the JA and ethylene signal transduction pathways and thereby provide new insight into the nature of the molecular components involved in the cross talk between these two hormones. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Genome, Plant; Host-Pathogen Interactions; Immunity, Innate; Oxylipins; Plant Diseases; RNA Interference; Signal Transduction; Transcription Factors | 2008 |
A new CULLIN 1 mutant has altered responses to hormones and light in Arabidopsis.
Regulated protein degradation contributes to plant development by mediating signaling events in many hormone, light, and developmental pathways. Ubiquitin ligases recognize and ubiquitinate target proteins for subsequent degradation by the 26S proteasome. The multisubunit SCF is the best-studied class of ubiquitin ligases in Arabidopsis (Arabidopsis thaliana). However, the extent of SCF participation in signaling networks is unclear. SCFs are composed of four subunits: CULLIN 1 (CUL1), ASK, RBX1, and an F-box protein. Null mutations in CUL1 are embryo lethal, limiting insight into the role of CUL1 and SCFs in later stages of development. Here, we describe a viable and fertile weak allele of CUL1, called cul1-6. cul1-6 plants have defects in seedling and adult morphology. In addition to reduced auxin sensitivity, cul1-6 seedlings are hyposensitive to ethylene, red, and blue light conditions. An analysis of protein interactions with the cul1-6 gene product suggests that both RUB (related to ubiquitin) modification and interaction with the SCF regulatory protein CAND1 (cullin associated and neddylation dissociated) are disrupted. These findings suggest that the morphological defects observed in cul1-6 plants are caused by defective SCF complex formation. Characterization of weak cul1 mutants provides insight into the role of SCFs throughout plant growth and development. Topics: Arabidopsis; Arabidopsis Proteins; Cell Cycle Proteins; Cullin Proteins; Cyclopentanes; Cytokinins; Ethylenes; Flowers; Gene Expression Regulation, Plant; Gravitropism; Hypocotyl; Indoleacetic Acids; Light; Mutation; Oxylipins; Phytochrome A; Plant Growth Regulators; Seedlings; Signal Transduction | 2007 |
Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.
The basal defenses important in curtailing the development of the phloem-feeding silverleaf whitefly (Bemisia tabaci type B; SLWF) on Arabidopsis (Arabidopsis thaliana) were investigated. Sentinel defense gene RNAs were monitored in SLWF-infested and control plants. Salicylic acid (SA)-responsive gene transcripts accumulated locally (PR1, BGL2, PR5, SID2, EDS5, PAD4) and systemically (PR1, BGL2, PR5) during SLWF nymph feeding. In contrast, jasmonic acid (JA)- and ethylene-dependent RNAs (PDF1.2, VSP1, HEL, THI2.1, FAD3, ERS1, ERF1) were repressed or not modulated in SLWF-infested leaves. To test for a role of SA and JA pathways in basal defense, SLWF development on mutant and transgenic lines that constitutively activate or impair defense pathways was determined. By monitoring the percentage of SLWF nymphs in each instar, we show that mutants that activate SA defenses (cim10) or impair JA defenses (coi1) accelerated SLWF nymphal development. Reciprocally, mutants that activate JA defenses (cev1) or impair SA defenses (npr1, NahG) slowed SLWF nymphal development. Furthermore, when npr1 plants, which do not activate downstream SA defenses, were treated with methyl jasmonate, a dramatic delay in nymph development was observed. Collectively, these results showed that SLWF-repressed, JA-regulated defenses were associated with basal defense to the SLWF. Topics: Animals; Arabidopsis; Cyclopentanes; Ethylenes; Feeding Behavior; Female; Gene Expression Profiling; Gene Expression Regulation, Plant; Hemiptera; Larva; Male; Oxylipins; Salicylic Acid; Signal Transduction | 2007 |
Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.
A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. A large body of evidence suggests that plant WRKY transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of specific WRKY DNA-binding transcription factors in plant defense.. We analyzed the role of the WRKY25 transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae. WRKY25 protein recognizes the TTGACC W-box sequences and its translational fusion with green fluorescent protein is localized to the nucleus. WRKY25 expression is responsive to general environmental stress. Analysis of stress-induced WRKY25 in the defense signaling mutants npr1, sid2, ein2 and coi1 further indicated that this gene is positively regulated by the salicylic acid (SA) signaling pathway and negatively regulated by the jasmonic acid signaling pathway. Two independent T-DNA insertion mutants for WRKY25 supported normal growth of a virulent strain of P. syringae but developed reduced disease symptoms after infection. By contrast, Arabidopsis constitutively overexpressing WRKY25 supported enhanced growth of P. syringae and displayed increased disease symptom severity as compared to wild-type plants. These WRKY25-overexpressing plants also displayed reduced expression of the SA-regulated PR1 gene after the pathogen infection, despite normal levels of free SA.. The nuclear localization and sequence-specific DNA-binding activity support that WRKY25 functions as a transcription factor. Based on analysis of both T-DNA insertion mutants and transgenic overexpression lines, stress-induced WRKY25 functions as a negative regulator of SA-mediated defense responses to P. syringae. This proposed role is consistent with the recent finding that WRKY25 is a substrate of Arabidopsis MAP kinase 4, a repressor of SA-dependent defense responses. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Green Fluorescent Proteins; Immunity, Innate; Molecular Sequence Data; Oxylipins; Plant Growth Regulators; Plants, Genetically Modified; Pseudomonas syringae; Recombinant Fusion Proteins; Regulatory Sequences, Nucleic Acid; Salicylic Acid; Signal Transduction; Transcription Factors | 2007 |
The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants.
In tobacco (Nicotiana tabacum), wounding causes rapid activation of two mitogen-activated protein kinases (MAPKs), wound-induced protein kinase (WIPK) and salicylic acid (SA)-induced protein kinase (SIPK), and the subsequent accumulation of jasmonic acid (JA). Our previous studies suggested that activation of WIPK is required for the production of wound-induced JA. However, the exact role of WIPK remains unresolved. We generated transgenic tobacco plants in which either WIPK or SIPK were silenced using RNA interference to define the roles of WIPK and SIPK in the wound response. In addition, transgenic tobacco plants were generated in which both WIPK and SIPK were silenced to examine the possibility that they have redundant roles. Wound-induced JA production was reduced compared with non-silenced plants in all of the WIPK-, SIPK- and WIPK/SIPK-silenced plants. Transgenic plants over-expressing NtMKP1, a gene encoding tobacco MAPK phosphatase, which inactivates WIPK and SIPK, also exhibited reduced JA production in response to wounding. In both WIPK/SIPK-silenced and NtMKP1-over-expressing plants, wounding resulted in an abnormal accumulation of both SA and transcripts for SA-responsive genes. These results suggest that WIPK and SIPK play an important role in JA production in response to wounding, and that they function cooperatively to control SA biosynthesis. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Glucosides; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Nicotiana; Oxylipins; Plant Proteins; Plants, Genetically Modified; Salicylates | 2007 |
GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis.
Ethylene-responsive element-binding proteins (EREBPs) are plant-specific transcription factors, many of which have been linked to plant defense responses. Conserved EREBP domains bind to the GCC box, a promoter element found in pathogenesis-related (PR) genes. We previously identified an EREBP gene from soybean (GmEREBP1) whose transcript abundance decreased in soybean cyst-nematode-infected roots of a susceptible cultivar, whereas it increased in abundance in infected roots of a resistant cultivar. Here, we report further characterization of this gene. Transient expression analyses showed that GmEREBP1 is localized to the plant nucleus and functions as a transcriptional activator in soybean leaves. Transgenic soybean plants expressing GmEREBP1 activated the expression of the ethylene (ET)-responsive gene PR2 and the ET- and jasmonic acid (JA)-responsive gene PR3, and the salicylic acid (SA)-responsive gene PR1 but not the SA-responsive PR5. Similarly, transgenic Arabidopsis plants expressing GmEREBP1 showed elevated mRNA abundance of the ET-regulated gene PR3 and the ET- and JA-regulated defense-related gene PDF1.2 but not the ET-regulated GST2, and the SA-regulated gene PR1 but not the SA-regulated PR2 and PR5. Transgenic soybean and Arabidopsis plants inoculated with cyst nematodes did not display a significantly altered susceptibility to nematode infection. These results collectively show that GmEREBP1 functions as a transacting inducer of defense gene expression in both soybean and Arabidopsis and mediates the expression of both ET- and JA- and SA-regulated defense-related genes in these plant species. Topics: Animals; Arabidopsis; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Glycine max; Nematoda; Oxylipins; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Transcription Factors | 2007 |
The role of pectate lyase and the jasmonic acid defense response in Pseudomonas viridiflava virulence.
Pseudomonas viridiflava is a common pathogen of Arabidopsis thaliana in wild populations, yet very little is known about mechanisms of resistance and virulence in this interaction. We examined the induced defense response of A. thaliana to several strains of P. viridiflava collected from this host by quantifying the expression of PR-1 and LOX2/PDF1.2, which serve as markers for induction of the salicylic and jasmonic acid (JA) pathways, respectively. Growth of these strains then was assessed on Col-0, the fad3/7/8 and coil-1 mutants deficient in JA- and ethylene (ET)-induced defense responses, and the sid2-1 mutant deficient in salicylic acid-induced defense responses. All strains of P. viridiflava induced high expression of LOX2 and PDF1.2 on Col-0. In contrast, PR-1 expression was delayed and reduced relative to PDF1.2 expression. Additionally, three of four P. viridiflava strains were more virulent on fad3/7/8 relative to Col-0, whereas all strains were more virulent on coil-1 relative to Col-0, indicating that P. viridiflava generally may be suppressed by JA/ET-mediated defense responses. In contrast, no increase in the growth of P. viridiflava strains was observed in the sid2-1 mutant relative to Col-0. Parallel experiments were performed with the closely related P. syringae pv. tomato for comparative purposes. In addition, we assessed the role of pectate lyase and the alternative sigma factor HrpL in P. viridiflava virulence on A. thaliana and found that pectate lyase activity is correlated with virulence, whereas the removal of pectate lyase or HrpL significantly reduced virulence. Topics: Arabidopsis; Bacterial Proteins; Cyclopentanes; Ethylenes; Fimbriae, Bacterial; Gene Expression Regulation, Plant; Microscopy, Electron, Transmission; Molecular Sequence Data; Mutation; Nicotiana; Oxylipins; Plant Diseases; Polysaccharide-Lyases; Pseudomonas; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, DNA; Virulence | 2007 |
Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance.
Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane-localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW-RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)-responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens. Topics: Abscisic Acid; Arabidopsis; Biological Factors; Cell Wall; Cyclopentanes; Ethylenes; Fungi; Gene Expression Regulation, Plant; Genes, Plant; Glucosyltransferases; Immunity, Innate; Models, Biological; Mutation; Oxylipins; Plant Diseases; Salicylic Acid; Signal Transduction; Up-Regulation | 2007 |
The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis.
The plant hormone jasmonic acid (JA) plays a key role in the environmental stress responses and developmental processes of plants. Although ATMYC2/JASMONATE-INSENSITIVE1 (JIN1) is a major positive regulator of JA-inducible gene expression and essential for JA-dependent developmental processes in Arabidopsis thaliana, molecular mechanisms underlying the control of ATMYC2/JIN1 expression remain largely unknown. Here, we identify a mitogen-activated protein kinase (MAPK) cascade, MAPK KINASE 3 (MKK3)-MAPK 6 (MPK6), which is activated by JA in Arabidopsis. We also show that JA negatively controls ATMYC2/JIN1 expression, based on quantitative RT-PCR and genetic analyses using gain-of-function and loss-of-function mutants of the MKK3-MPK6 cascade. These results indicate that this kinase unit plays a key role in JA-dependent negative regulation of ATMYC2/JIN1 expression. Both positive and negative regulation by JA may be used to fine-tune ATMYC2/JIN1 expression to control JA signaling. Moreover, JA-regulated root growth inhibition is affected by mutations in the MKK3-MPK6 cascade, which indicates important roles in JA signaling. We provide a model explaining how MPK6 can convert three distinct signals - JA, pathogen, and cold/salt stress - into three different sets of responses in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Enzyme Activation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Genes, Plant; MAP Kinase Kinase 3; Mitogen-Activated Protein Kinases; Models, Biological; Mutant Proteins; Oxylipins; Plant Roots; RNA, Messenger; Signal Transduction | 2007 |
Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory.
In cowpea (Vigna unguiculata), fall armyworm (Spodoptera frugiperda) herbivory and oral secretions (OS) elicit phytohormone production and volatile emission due to inceptin [Vu-In; (+)ICDINGVCVDA(-)], a peptide derived from chloroplastic ATP synthase gamma-subunit (cATPC) proteins. Elicitor-induced plant volatiles can function as attractants for natural enemies of insect herbivores. We hypothesized that inceptins are gut proteolysis products and that larval OS should contain a mixture of related peptides. In this study, we identified three additional cATPC fragments, namely Vu-(GE+)In [(+)GEICDINGVCVDA(-)], Vu-(E+)In [(+)EICDINGVCVDA(-)], and Vu-In(-A) [(+)ICDINGVCVD(-)]. Leaf bioassays for induced ethylene (E) production demonstrated similar effective concentration(50) values of 68, 45, and 87 fmol leaf(-1) for Vu-In, Vu-(E+)In, and Vu-(GE+)In, respectively; however, Vu-In(-A) proved inactive. Shortly following ingestion of recombinant proteins harboring cATPC sequences, larval OS revealed similar concentrations of the three elicitors with 80% of the potential inceptin-related peptides recovered. Rapidly shifting peptide ratios over time were consistent with continued proteolysis and preferential stability of inceptin. Likewise, larvae ingesting host plants with inceptin precursors containing an internal trypsin cleavage site rapidly lost OS-based elicitor activity. OS containing inceptin elicited a rapid and sequential induction of defense-related phytohormones jasmonic acid, E, and salicylic acid at 30, 120, and 240 min, respectively, and also the volatile (E)-4,8-dimethyl-1,3,7-nonatriene. Similar to established peptide signals such as systemin and flg22, amino acid substitutions of Vu-In demonstrate an essential role for aspartic acid residues and an unaltered C terminus. In cowpea, insect gut proteolysis following herbivory generates inappropriate fragments of an essential metabolic enzyme enabling plant non-self-recognition. Topics: Alkenes; Amino Acids; Animals; Chloroplast Proton-Translocating ATPases; Cyclopentanes; Ethylenes; Fabaceae; Feeding Behavior; Food Chain; Larva; Molecular Sequence Data; Mouth; Oxylipins; Peptides; Plant Growth Regulators; Plant Leaves; Salicylic Acid; Signal Transduction; Spodoptera; Time Factors; Trypsin | 2007 |
Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3.
Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about 50% of the genes regulated by OGs, including genes encoding enzymes involved in secondary metabolism, show a similar change of expression during B. cinerea infection. In particular, expression of PHYTOALEXIN DEFICIENT3 (PAD3) is strongly up-regulated by both OGs and infection independently of SA, JA, and ET. OG treatments do not enhance resistance to B. cinerea in the pad3 mutant or in underinducer after pathogen and stress1, a mutant with severely impaired PAD3 expression in response to OGs. Similarly to OGs, the bacterial flagellin peptide elicitor flg22 also enhanced resistance to B. cinerea in a PAD3-dependent manner, independently of SA, JA, and ET. This work suggests, therefore, that elicitors released from the cell wall during pathogen infection contribute to basal resistance against fungal pathogens through a signaling pathway also activated by pathogen-associated molecular pattern molecules. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mixed Function Oxygenases; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylates; Signal Transduction | 2007 |
The tomato ethylene receptor LE-ETR3 (NR) is not involved in mediating ozone sensitivity: causal relationships among ethylene emission, oxidative burst and tissue damage.
The causal relationships among ethylene emission, oxidative burst and tissue damage, and the temporal expression patterns of some ethylene biosynthetic and responsive genes, were examined in the Never ripe (Nr) tomato (Lycopersicon esculentum) mutant and its isogenic wild type (cv. Pearson), to investigate the role played by the ethylene receptor LE-ETR3 (NR) in mediating the plant response to ozone (O(3)). Tomato plants were used in a time-course experiment in which they were exposed to acute O(3) fumigation with 200 nl l(-1) O(3) for 4 h. The pattern of leaf lesions indicated similar sensitivities to O(3) for cv. Pearson and Nr. In both genotypes, O(3) activated a hydrogen peroxide (H(2)O(2))-dependent oxidative burst, which was also ethylene-driven in Nr leaves. Ozone induced some ethylene and jasmonate biosynthetic and inducible genes, although with different timings and to different extents in the two genotypes. The overall data indicate that Nr retains partial sensitivity to ethylene, suggesting only a marginal role of the NR receptor in mediating the complex response of tomato plants to O(3). Topics: Biosynthetic Pathways; Cell Respiration; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Lyases; Molecular Sequence Data; Mutation; Oxylipins; Ozone; Plant Proteins; Signal Transduction; Solanum lycopersicum | 2007 |
Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata.
Mitogen-activated protein kinase (MAPK) signaling plays a central role in transducing extracellular stimuli into intracellular responses, but its role in mediating plant responses to herbivore attack remains largely unexplored. When Manduca sexta larvae attack their host plant, Nicotiana attenuata, the plant's wound response is reconfigured at transcriptional, phytohormonal, and defensive levels due to the introduction of oral secretions (OS) into wounds during feeding. We show that OS dramatically amplify wound-induced MAPK activity and that fatty acid-amino acid conjugates in M. sexta OS are the elicitors. Virus-induced gene silencing of salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase revealed their importance in mediating wound and OS-elicited hormonal responses and transcriptional regulation of defense-related genes. We found that after applying OS to wounds created in one portion of a leaf, SIPK is activated in both wounded and specific unwounded regions of the leaf but not in phylotactically connected adjacent leaves. We propose that M. sexta attack elicits a mobile signal that travels to nonwounded regions of the attacked leaf where it activates MAPK signaling and, thus, downstream responses; subsequently, a different signal is transported by the vascular system to systemic leaves to initiate defense responses without activating MAPKs in systemic leaves. Topics: Animals; Cyclopentanes; Enzyme Activation; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Gene Silencing; Genes, Plant; Manduca; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Models, Biological; Molecular Sequence Data; Nicotiana; Oxylipins; Phenylalanine Ammonia-Lyase; Plant Leaves; Protein Kinases; RNA, Messenger; Salicylic Acid; Transcription Factors; Trypsin Inhibitors | 2007 |
Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling.
Sebacina vermifera, a growth-promoting endophytic fungus, significantly increases Nicotiana attenuata's growth but impairs both its herbivore resistance and its accumulation of the costly, jasmonic acid (JA)-regulated defense protein, trypsin proteinase inhibitor (TPI). To determine if the fungi's growth-promoting effects can be attributed to lower TPI-related defense costs, we inoculated transformed N. attenuata plants silenced in their ability to synthesize JA, JA-isoleucine, and TPI by antisense (lipoxygenase 3 [as-lox3] and Thr deaminase [as-td]) and inverted repeat (ir-tpi) expression, and found that inoculation promoted plant growth as in untransformed wild-type plants. Moreover, herbivore-elicited increases in JA and JA-isoleucine concentrations did not differ between inoculated and uninoculated wild-type plants. However, inoculation significantly reduced the morphological effect of 1-aminocyclopropane-1-carboxylic acid on wild-type seedlings in a triple response assay, suggesting that ethylene signaling was impaired. Furthermore, S. vermifera failed to promote the growth of N. attenuata plants transformed to silence ethylene production (1-aminocyclopropane-1-carboxylic acid oxidase [ir-aco]). Inoculating wild-type plants with S. vermifera decreased the ethylene burst elicited by applying Manduca sexta oral secretions to mechanical wounds. Accordingly, oral secretion-elicited transcript levels of the ethylene synthesis genes NaACS3, NaACO1, and NaACO3 in inoculated plants were significantly lower compared to these levels in uninoculated wild-type plants. Inoculation accelerated germination in wild-type seeds; however, uninoculated wild-type seeds germinated as rapidly as inoculated seeds in the presence of the ethylene scrubber KMnO(4). In contrast, neither inoculation nor KMnO(4) exposure influenced the germination of ir-aco seeds. We conclude that S. vermifera increases plant growth by impairing ethylene production independently of JA signaling and TPI production. Topics: Animals; Basidiomycota; Carbon-Carbon Lyases; Cyclopentanes; Ethylenes; Gene Silencing; Germination; Larva; Manduca; Mouth; Nicotiana; Oxylipins; Seedlings; Seeds; Signal Transduction; Symbiosis; Transcription, Genetic; Trypsin Inhibitors | 2007 |
Reduction of ethylene emission from Scots pine elicited by insect egg secretion.
Pinus sylvestris L. is known to activate indirect defence in response to attack by an herbivorous sawfly. Egg deposition by the sawfly Diprion pini L. induces pine to release, three days after egg laying, locally and systemically terpenoid volatiles that attract parasitoids to kill the eggs. The elicitor of the pine's response is located in the sawfly's oviduct secretion enveloping the eggs after deposition. Application of this secretion on twigs with artificially conducted ovipositional woundings mimics the effects of egg deposition. Furthermore, jasmonic acid (JA) induces a volatile pattern similar, but not identical, to the one induced by egg deposition. To gain deeper insight into the transduction of plant signals induced by herbivore egg deposition, it was investigated whether ethylene emission from pine is affected by sawfly egg deposition. Systemically induced ethylene emission from differently treated pine twigs was monitored for a period of 3 d after treatment. Ethylene emissions from untreated control twigs were compared with those from twigs treated as follows: (i) sawfly egg secretion [=oviduct secretion (OVI)] was transferred on artificially wounded pine needles (attractive volatiles), (ii) needles were artificially wounded (non-attractive volatiles), and (iii) the twig was supplied with JA (attractive volatiles). Ethylene emission from systemically OVI-induced twigs was significantly lower than from untreated controls, whereas artificial wounding had no detectable effect. JA-treated twigs released much more ethylene and showed higher variability of ethylene emission than artificially wounded twigs and OVI-treated ones. Ethylene emissions from pine after the various treatments studied here are discussed with respect to known effects of insect feeding on ethylene release from plants. Topics: Animals; Cyclopentanes; Ethylenes; Female; Hymenoptera; Oviducts; Oviposition; Oxylipins; Pinus sylvestris; Plant Growth Regulators | 2007 |
The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis.
The Arabidopsis mitogen-activated protein kinase (MAPK) kinase 2 (MKK2) was shown to mediate cold and salt stress responses through activation of the two MAP kinases MPK4 and MPK6. Transcriptome analysis of plants expressing constitutively active MKK2 (MKK2-EE plants) showed altered expression of genes induced by abiotic stresses but also a significant number of genes involved in defense responses. Both MPK4 and MPK6 became rapidly activated upon Pseudomonas syringae pv. tomato DC3000 infection and MKK2-EE plants showed enhanced levels of MPK4 activation. Although MKK2-EE plants shared enhanced expression of genes encoding enzymes of ethylene (ET) and jasmonic acid (JA) synthesis, ET, JA, and salicylic acid (SA) levels did not differ dramatically from those of wild-type or mkk2-null plants under ambient growth conditions. Upon P. syringae pv. tomato DC3000 infection, however, MKK2-EE plants showed reduced increases of JA and SA levels. These results indicate that MKK2 is involved in regulating hormone levels in response to pathogens. MKK2-EE plants were more resistant to infection by P. syringae pv. tomato DC3000 and Erwinia carotovora subsp. carotovora, but showed enhanced sensitivity to the fungal necrotroph Alternaria brassicicola. Our data indicate that MKK2 plays a role in abiotic stress tolerance and plant disease resistance. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Erwinia amylovora; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mitogen-Activated Protein Kinase Kinases; Mutation; Oxylipins; Plant Diseases; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid | 2007 |
ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis.
Analyses of Arabidopsis thaliana defense response to the damping-off oomycete pathogen Pythium irregulare show that resistance to P. irregulare requires a multicomponent defense strategy. Penetration represents a first layer, as indicated by the susceptibility of pen2 mutants, followed by recognition, likely mediated by ERECTA receptor-like kinases. Subsequent signaling of inducible defenses is predominantly mediated by jasmonic acid (JA), with insensitive coi1 mutants showing extreme susceptibility. In contrast with the generally accepted roles of ethylene and salicylic acid cooperating with or antagonizing, respectively, JA in the activation of defenses against necrotrophs, both are required to prevent disease progression, although much less so than JA. Meta-analysis of transcriptome profiles confirmed the predominant role of JA in activation of P. irregulare-induced defenses and uncovered abscisic acid (ABA) as an important regulator of defense gene expression. Analysis of cis-regulatory sequences also revealed an unexpected overrepresentation of ABA response elements in promoters of P. irregulare-responsive genes. Subsequent infections of ABA-related and callose-deficient mutants confirmed the importance of ABA in defense, acting partly through an undescribed mechanism. The results support a model for ABA affecting JA biosynthesis in the activation of defenses against this oomycete. Topics: Abscisic Acid; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Immunity, Innate; Meta-Analysis as Topic; Oomycetes; Oxylipins; Phylogeny; Plant Diseases; Regulatory Sequences, Nucleic Acid; Salicylic Acid; Signal Transduction; Transcription, Genetic | 2007 |
Rhizobacteria-induced priming in Arabidopsis is dependent on ethylene, jasmonic acid, and NPR1.
A nonpathogenic rhizobacterium, Pseudomonas putida LSW17S, elicited systemic protection against Fusarium wilt and pith necrosis caused by Fusarium oxysporum f. sp. lycopersici and P. corrugata in tomato (Lycopersicon esculentum L.). LSW17S also confers disease resistance against P. syringae pv. tomato DC3000 (DC3000) on Arabidopsis ecotype Col-0. To investigate mechanisms underlying disease protection, expression patterns of defense-related genes PR1, PR2, PR5, and PDF1.2 and cellular defense responses such as hydrogen peroxide accumulation and callose deposition were investigated. LSW17S treatment exhibited the typical phenomena of priming. Strong and faster transcription of defense-related genes was induced and hydrogen peroxide or callose were accumulated in Arabidopsis treated with LSW17S and infected with DC3000. In contrast, individual actions of LSW17S and DC3000 did not elicit rapid molecular and cellular defense responses. Priming by LSW17S was translocated systemically and retained for more than 10 days. Treatment with LSW17S reduced pathogen proliferation in Arabidopsis ecotype Col-0 expressing bacterial NahG; however, npr1, etr1, and jar1 mutations impaired inhibition of pathogen growth. Cellular and molecular priming responses support these results. In sum, LSW17S primes Arabidopsis for NPR1-, ethylene-, and jasmonic acid-dependent disease resistance, and efficient molecular and cellular defense responses. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Glucans; Hydrogen Peroxide; Mutation; Oxylipins; Plant Diseases; Plants, Genetically Modified; Pseudomonas putida; Pseudomonas syringae; Reverse Transcriptase Polymerase Chain Reaction | 2007 |
Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi.
Many taxonomically diverse plant species are attacked by Erwinia chrysanthemi, a member of the causal agents of soft-rotting diseases. Symptom development is due to the collective action of pectin-degrading enzymes secreted by the bacterium through a type II secretion system (T2SS). Using Arabidopsis thaliana as a susceptible host, we show that plants respond to E. chrysanthemi 3937 by expressing cell-wall reactions, production of an oxidative burst, and activation of salicylic acid (SA) and jasmonic acid (JA) or ethylene (ET) signaling pathways. We found that the oxidative burst is mainly generated via the expression of the AtrbohD gene, constitutes a barrier of resistance to bacterial attack, and acts independently of the SA-mediated response. To determine the importance of T2SS-secreted proteins in elicitation of these defenses, we used a T2SS deficient mutant and purified enzymatic preparations of representative members of strain 3937 pectate lyase activity. The T2SS-secreted proteins were responsible only partially for the activation of SA and JA or ET signaling pathways observed after infection with the wild-type bacterium and were not involved in the expression of other identified defense reactions. Our study shows the differential role played by pectate lyases isoenzymes in this process and highlights the complexity of the host immune network, which is finely controlled by the bacterium. Topics: Arabidopsis; Bacterial Proteins; Cell Wall; Cyclopentanes; Dickeya chrysanthemi; Ethylenes; Gene Expression Regulation, Bacterial; Glucans; Isoenzymes; Microscopy, Electron, Transmission; Mutation; Oxylipins; Plant Leaves; Polysaccharide-Lyases; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Signal Transduction | 2007 |
The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis.
Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plant's response to B. cinerea. Topics: Arabidopsis; Arabidopsis Proteins; Biomarkers; Botrytis; Cyclopentanes; Down-Regulation; Enzyme Activation; Ethylenes; Immunity, Innate; Mitogen-Activated Protein Kinases; Oxylipins; Phosphoprotein Phosphatases; Plant Diseases; Protein Binding; Protoplasts; Saccharomyces cerevisiae | 2007 |
1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds.
The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression. Topics: Abscisic Acid; Amino Acid Oxidoreductases; Amino Acids, Cyclic; Beta vulgaris; Cyclopentanes; Cytokinins; Ethylenes; Fruit; Germination; Gibberellins; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Plant Proteins; RNA, Messenger; Seeds | 2007 |
Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense?
Germin-like proteins (GLP) have various proposed roles in plant development and defense. Seven novel GLP cDNA clones were isolated from grapevine (Vitis vinifera cv. Chardonnay). Reverse transcriptase-polymerase chain reaction expression analysis revealed that the VvGLP genes exhibit diverse and highly specific patterns of expression in response to a variety of abiotic and biotic treatments, including challenge by Erysiphe necator, Plasmopara viticola, and Botrytis cinerea, suggesting a diversity of roles for each of the GLP family members. Significantly, one of the grapevine GLP genes, VvGLP3, is induced specifically by E. necator infection and expression is closely linked to the site of infection. Subcellular localization of VvGLP3 determined by transient expression of a VvGLP3:GFP fusion construct in onion cells indicated that the recombinant protein was targeted to the cell wall. Recombinant VvGLP3 was successfully expressed in Arabidopsis thaliana and the partially purified recombinant protein was demonstrated to have superoxide dismutase activity. This data has provided an insight into the diverse nature of the GLP family in grapevine and suggests that VvGLP3 may be involved in the defense response against E. necator. Topics: Amino Acid Sequence; Arabidopsis; Ascomycota; Cloning, Molecular; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Molecular Sequence Data; Multigene Family; Onions; Oxylipins; Phylogeny; Plant Diseases; Plant Leaves; Plant Proteins; Recombinant Proteins; Salicylic Acid; Signal Transduction; Superoxide Dismutase; Vitis | 2007 |
Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature.
The phytohormone jasmonic acid (JA) is known to mediate herbivore resistance, while salicylic acid (SA) and non-expressor of PR-1 (NPR1) mediate pathogen resistance in many plants. Herbivore attack on Nicotiana attenuata elicits increases in JA and JA-mediated defenses, but also increases SA levels and Na-NPR1 transcripts from the plant's single genomic copy. SA treatment of wild-type plants increases Na-NPR1 and Na-PR1 transcripts. Plants silenced in NPR1 accumulation by RNAi (ir-npr1) are highly susceptible to herbivore and pathogen attack when planted in their native habitat in Utah. They are also impaired in their ability to attract Geocorus pallens predators, due to their decreased ability to release cis-alpha-bergamotene, a JA-elicited volatile 'alarm call'. In the glasshouse, Spodoptera exigua larvae grew better on ir-npr1 plants, which had low levels of JA, JA-isoleucine/leucine, lipoxygenase-3 (LOX3) transcripts and JA-elicited direct defense metabolites (nicotine, caffeoyl putrescine and rutin), but high levels of SA and isochorismate synthase (ICS) transcripts, suggesting de novo biosynthesis of SA. A microarray analysis revealed downregulation of many JA-elicited genes and upregulation of SA biosynthetic genes. JA treatment restored nicotine levels and resistance to S. exigua in ir-npr1 plants. We conclude that, during herbivore attack, NPR1 negatively regulates SA production, allowing the unfettered elicitation of JA-mediated defenses; when NPR1 is silenced, the elicited increases in SA production antagonize JA and JA-related defenses, making the plants susceptible to herbivores. Topics: Animals; Blotting, Western; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Gene Silencing; Larva; Lepidoptera; Nicotiana; Nicotine; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Utah | 2007 |
Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling.
Genotypic differences in susceptibility of Arabidopsis thaliana to Sclerotinia sclerotiorum have not been reported due to the extreme susceptibility of this cruciferous plant. To overcome this limitation, we have established inoculation conditions that enable evaluation of differences in susceptibility to S. sclerotiorum among Arabidopsis mutants and ecotypes. Two coil mutant alleles conferred hypersusceptibility to S. sclerotiorum. The plant defensin gene PDF1.2 was no longer induced after challenging the coi1-2 mutant with S. sclerotiorum. Hypersusceptibility of the coi1-2 mutant to S. sclerotiorum was not correlated with oxalate sensitivity. The mutants npr1 and ein2 were also hypersusceptible to S. sclerotiorum. Induction of PDF1.2 and the pathogenesis-related gene PR1 was reduced in ein2 and npr1 mutants, respectively. Actigard, a commercial formulation of the systemic acquired resistance inducer benzothiadiazole, reduced susceptibility to S. sclerotiorum. Based on histochemical analysis of oxalate-deficient and wild-type strains of S. sclerotiorum, oxalate caused a decrease in hydrogen peroxide production but no detectable changes in plant superoxide production or gene expression. Topics: Alleles; Arabidopsis; Arabidopsis Proteins; Ascomycota; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genetic Predisposition to Disease; Mutation; Oxylipins; Plant Diseases; Plant Leaves; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2007 |
Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis.
Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory. Topics: Abscisic Acid; Animals; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Feeding Behavior; Gene Expression Profiling; Gene Expression Regulation, Plant; Larva; Moths; Mutation; Oligonucleotide Array Sequence Analysis; Oxylipins; Salicylic Acid; Signal Transduction; Time Factors | 2007 |
Wound-induced expression of the ferulate 5-hydroxylase gene in Camptotheca acuminata.
The phenylpropanoid pathway plays important roles in plants following exposure to environmental stresses, such as wounding and pathogen attack, which lead to the production of a variety of compounds, including lignin, flavonoids and phytoalexins. Ferulate 5-hydroxylase (F5H) is a cytochrome P450-dependent monooxygenase that catalyses the hydroxylation of ferulic acid, coniferaldehyde and coniferyl alcohol, leading to sinapic acid and syringyl lignin biosynthesis. We isolated F5H cDNA and genomic DNA from Camptotheca acuminata and investigated the expression pattern of the C. acuminata F5H (CaF5H1) gene in response to wounding. A search against the BLOCKS database of conserved protein motifs indicated that CaF5H1 retains features in common with F5Hs reported from other plants. 5'-flanking region analysis using the PLACE database showed that putative regulatory elements related to various abiotic and biotic stresses, such as drought, wounding, low temperature and pathogens, exist in the 5'-flanking region of CaF5H1. Based upon these analysis results, we investigated the expression pattern of CaF5H1 gene in response to wounding and stress-related molecules. Here, we show that CaF5H1 transcripts accumulated in the leaves in response to mechanical wounding or the application of molecules involved in the stress response, such as ethylene, ABA and hydrogen peroxide (H2O2). The application of salicylic acid and diphenylene iodonium (DPI) inhibited the wound-induced expression of CaF5H1. Taken together, we suggest that wound-induced expression of CaF5H1 may be mediated by MJ and H2O2 and enhanced phenylpropanoid contents via CaF5H1 maybe function in response to various stresses, including wounding, in plants. Topics: Abscisic Acid; Acrolein; Amino Acid Sequence; Base Sequence; Camptotheca; Coumaric Acids; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Hydrogen Peroxide; Mixed Function Oxygenases; Molecular Sequence Data; Onium Compounds; Oxylipins; Phenols; Plant Leaves; Plant Roots; Plant Stems; Salicylic Acid; Sequence Alignment; Transcription, Genetic | 2006 |
The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicoti
To investigate the role of stress in nitrogen management in plants, the effect of pathogen attack, elicitors, and phytohormone application on the expression of the two senescence-related markers GS1 (cytosolic glutamine synthetase EC 6.3.1.2) and GDH (glutamate dehydrogenase, EC 1.4.1.2) involved in nitrogen mobilization in senescing leaves of tobacco (Nicotiana tabacum L.) plants, was studied. The expression of genes involved in primary nitrogen assimilation such as GS2 (chloroplastic glutamine synthetase) and Nia (nitrate reductase, EC 1.6.1.1) was also analysed. The Glubas gene, coding a beta-1,3-glucanase, was used as a plant-defence gene control. As during natural senescence, the expression of GS2 and Nia was repressed under almost all stress conditions. By contrast, GS1 and GDH mRNA accumulation was increased. However, GS1 and GDH showed differential patterns of expression depending on the stress applied. The expression of GS1 appeared more selective than GDH. Results indicate that the GDH and GS1 genes involved in leaf senescence are also a component of the plant defence response during plant-pathogen interaction. The links between natural plant senescence and stress-induced senescence are discussed, as well as the potential role of GS1 and GDH in a metabolic safeguard process. Topics: Biomarkers; Cucumovirus; Cyclopentanes; Ethylenes; Fungi; Gene Expression Regulation, Plant; Glutamate Dehydrogenase; Glutamate-Ammonia Ligase; Nicotiana; Nitrogen; Oxidative Stress; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Potyvirus; Pseudomonas; Reactive Oxygen Species; Salicylic Acid | 2006 |
Ozone-induced expression of the Arabidopsis FAD7 gene requires salicylic acid, but not NPR1 and SID2.
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids to trienoic fatty acids in chloroplast membrane lipids. The expression of FAD7 was rapidly and locally induced by ozone exposure, which causes oxidative responses equivalent to pathogen-induced hypersensitive responses and subsequently activates various defense-related genes. This induction was reduced in salicylic acid (SA)-deficient NahG plants expressing SA hydroxylase, but was unaffected in etr1 and jar1 mutants, which are insensitive to ethylene and jasmonic acid (JA), respectively. The SA dependence of the FAD7 induction was confirmed by the exogenous application of SA. SA-induced expression of FAD7 in the npr1 mutant which is defective in an SA signaling pathway occurred to the same extent as in the wild type. Furthermore, in the sid2 mutant which lacks an enzyme required for SA biosynthesis, the expression of FAD7 was induced by ozone exposure. These results suggest that the ozone-induced expression of FAD7 gene requires SA, but not ethylene, JA, NPR1 and SID2. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Fatty Acid Desaturases; Gene Expression Regulation, Plant; Intramolecular Transferases; Mixed Function Oxygenases; Mutation; Nucleotidyltransferases; Oxylipins; Ozone; Plant Leaves; Receptors, Cell Surface; RNA, Messenger; Salicylic Acid; Signal Transduction; Time Factors | 2006 |
The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box.
Four AP2/EREBP genes encoding putative ethylene-responsive element binding factor (ERF)/AP2 domains were cloned from Brassica napus, and these genes could be induced by low temperature, ethylene, drought, high salinity, abscisic acid and jasmonate treatments. These four genes, named BnDREBIII-1 to BnDREBIII-4, were highly homologous and the 37th amino acid was the only difference among their ERF/AP2 domains. BnDREBIII-1 was demonstrated to be able to bind to both dehydration-responsive element and the GCC box and transactivate the expression of downstream genes, while BnDREBIII-4 could bind neither. Further results suggested that Ala37 might play a crucial role in the DNA binding or the stability of the ERF/AP2 domain. Topics: Abscisic Acid; Adaptation, Physiological; Alanine; Binding Sites; Brassica napus; Conserved Sequence; Cyclopentanes; Dehydration; DNA-Binding Proteins; DNA, Plant; Ethylenes; Gene Expression Regulation, Plant; Homeodomain Proteins; Nuclear Proteins; Oxylipins; Plant Proteins; Promoter Regions, Genetic; Response Elements; Salts; Seeds; Transcription Factors | 2006 |
Arabidopsis jasmonate signaling pathway.
Jasmonates control defense gene expression and male fertility in the model plant Arabidopsis thaliana. In both cases, the involvement of the jasmonate pathway is complex, involving large-scale transcriptional reprogramming. Additionally, jasmonate signaling is hard-wired into the auxin, ethylene, and salicylate signal networks, all of which are under intense investigation in Arabidopsis. In male fertility, jasmonic acid (JA) is the essential signal intervening both at the level of anther elongation and in pollen dehiscense. A number of genes potentially involved in jasmonate-dependent anther elongation have recently been discovered. In the case of defense, at least two jasmonates, JA and its precursor 12-oxo-phytodienoic acid (OPDA), are necessary for the fine-tuning of defense gene expression in response to various microbial pathogens and arthropod herbivores. However, only OPDA is required for full resistance to some insects and fungi. Other jasmonates probably affect yet more physiological responses. A series of breakthroughs have identified the SKP/CULLIN/F-BOX (SCF), CORONATINE INSENSITIVE (COI1) complex, acting together with the CONSTITUTIVE PHOTOMORPHOGENIC 9 (COP9) signalosome, as central regulatory components of jasmonate signaling in Arabidopsis. The studies, mostly involving mutational approaches, have paved the way for suppressor screens that are expected to further extend our knowledge of jasmonate signaling. When these and other new mutants affecting jasmonate signaling are characterized, new nodes will be added to the Arabidopsis Jasmonate Signaling Pathway Connections Map, and the lists of target genes regulated by jasmonates in Arabidopsis will be expanded. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Models, Biological; Oxylipins; Plant Growth Regulators; Salicylates; Signal Transduction | 2006 |
Jasmonate biochemical pathway.
Plants possess an interrelated family of potent fatty acid-derived regulators-the jasmonates. These compounds, which play roles in both defense and development, are derived from tri-unsaturated fatty acids [alpha-linolenic acid (18:3) or 7Z,10Z,13Z-hexadecatrienoic acid (16:3)]. The lipoxygenase-catalyzed addition of molecular oxygen to alpha-linolenic acid initiates jasmonate synthesis by providing a 13-hydroperoxide substrate for the formation of an unstable allene oxide that is then subject to enzyme-guided cyclization to produce 12-oxo-phytodienoic acid (OPDA). OPDA has several fates, including esterification into plastid lipids or transformation into the 12-carbon co-regulator jasmonic acid (JA). JA, the best-characterized member of the family, regulates both male and female fertility (depending on the plant species) and is an important mediator of defense gene expression. JA is itself a substrate for further diverse modifications. Genetic dissection of the pathway is revealing how the different jasmonates modulate different physiological processes. Each new family member that is discovered provides another key to understanding the fine control of gene expression in immune responses, in the initiation and maintenance of long-distance signal transfer in response to wounding, in the regulation of fertility, and in the turnover, inactivation, and sequestration of jasmonates, among other processes. The Jasmonate Biochemical Pathway provides an overview of the growing jasmonate family, and new members will be included in future versions of the Connections Map. Topics: alpha-Linolenic Acid; Cyclopentanes; Ethylenes; Fertility; Gene Expression Regulation, Plant; Models, Biological; Molecular Structure; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Physiological Phenomena; Plant Proteins; Salicylates; Signal Transduction | 2006 |
Transcription profile analyses identify genes and pathways central to root cap functions in maize.
Affymetrix GeneChips arrayed with about one-half (~23K) of the rice genes were used to profile gene transcription activity in three tissues comprising the maize root tip; the proximal meristem (PM), the quiescent center (QC), and the root cap (RC). Here we analyze the gene transcription profile of the RC, compared to both the PM and the QC, from three biological replicates. In the RC, a total of 669 genes were identified as being differentially upregulated, and 365 differentially downregulated. Real-time quantitative RT-PCR analysis was used to confirm upregulated genes in the RC. In addition, using the technique of laser microdissection (LMD) we localized upregulated gene expression to the lateral RC cells. Taken as a whole, transcription profile analyses revealed the upregulation in the maize RC of clusters of genes linked to major metabolic processes and pathways, including: (1) transport, both the export of carbohydrates and the uptake of nutrients; (2) sensing and responding to (often stressful) biotic and abiotic environmental stimuli; (3) integrating the responses of at least 3 major growth regulators (auxin, ethylene, jasmonic acid); (4) processing the large amount of carbohydrate transported into the RC. Although the profile data are derived using heterologous rice GeneChips, with about half of the total rice gene set, this study, nevertheless, provides a genomic scale characterization of the entire RC, and serves as a new platform from which to advance studies of the network of pathways operating in the maize RC. Topics: Arabidopsis; Biological Transport; Carbohydrate Metabolism; Carbohydrates; Cell Membrane; Cyclopentanes; DNA, Complementary; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation; Gene Expression Regulation, Plant; Hormones; Internet; Lasers; Microdissection; Models, Biological; Nucleic Acid Hybridization; Oligonucleotide Array Sequence Analysis; Oryza; Oxylipins; Plant Physiological Phenomena; Plant Roots; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger; Signal Transduction; Time Factors; Transcription, Genetic; Up-Regulation; Zea mays | 2006 |
Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis.
Root hair formation is an important model with which to study cell patterning and differentiation in higher plants. Ethylene and auxin are critical regulators of root hair development. The role of jasmonates (JAs) was examined in Arabidopsis root hair development as well as their interactions with ethylene in this process. The results have shown that both methyl jasmonate (MeJA) and jasmonic acid (JA) have a pronounced effect on promoting root hair formation. However, the effect of MeJA and JA on root hair formation was blocked by ethylene inhibitors Ag+ or aminoethoxyvinylglycine (AVG). The stimulatory effects of MeJA and JA were also diminished in ethylene-insensitive mutants etr1-1 and etr1-3. Furthermore, the JA biosynthesis inhibitors ibuprofen and salicylhydroxamic acid (SHAM) suppressed 1-aminocyclopropane-1-carboxylic acid (ACC)-induced root hair formation, and decreased the root hairs in seedlings of the ethylene over-producing mutant eto1-1. These results suggested that JAs promote root hair formation, through an interaction with ethylene. Topics: Acetates; Arabidopsis; Cyclopentanes; Ethylenes; Oxylipins; Plant Roots | 2006 |
Tobamovirus infection is independent of HSP101 mRNA induction and protein expression.
Heat shock protein 101 (HSP101) has been implicated in tobamovirus infections by virtue of its ability to enhance translation of mRNAs possessing the 5'Omega-leader of Tobacco mosaic virus (TMV). Enhanced translation is mediated by HSP101 binding to a CAA-repeat motif in TMV Omega leader. CAA repeat sequences are present in the 5' leaders of other tobamoviruses including Oilseed rape mosaic virus (ORMV), which infects Arabidopsis thaliana. HSP101 is one of eight HSP100 gene family members encoded by the A. thaliana genome, and of these, HSP101 and HSP98.7 are predicted to encode proteins localized to the cytoplasm where they could potentially interact with TMV RNA. Analysis of the expression of the HSP100s showed that only HSP101 mRNA transcripts were induced significantly by ORMV in A. thaliana. The induction of HSP101 mRNA was also correlated with an increase in its protein levels and was independent of defense-related signaling pathways involving salicylic acid, jasmonic acid, or ethylene. A. thaliana mutants lacking HSP101, HSP98.7, or both supported wild-type levels of ORMV replication and movement. Similar results were obtained for TMV infection in Nicotiana benthamiana plants silenced for HSP101, demonstrating that HSP101 is not necessary for efficient tobamovirus infection. Topics: Arabidopsis; Cyclopentanes; Cytoplasm; Ethylenes; Gene Expression Regulation; Heat-Shock Proteins; Immunoblotting; Locomotion; Mutation; Nicotiana; Oxylipins; Plant Diseases; Plant Proteins; RNA, Messenger; Salicylic Acid; Signal Transduction; Tobamovirus; Transcription Factors; Virus Replication | 2006 |
Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds.
Gene expression patterns covering over 10,000 seed-expressed sequences were analyzed by macroarray technology in maternal tissue (mainly pericarp) and filial endosperm and embryo during barley seed development from anthesis until late maturation. Defined sets of genes showing distinct expression patterns characterized both tissue type and major developmental phases. The analysis focused on regulatory networks involved in programmed cell death (PCD) and abscisic acid (ABA)-mediated maturation. These processes were similar in the different tissues, but typically involved the expression of alternative members of a common gene family. The analysis of co-expressed gene sets and the identification of cis regulatory elements in orthologous rice gene 'promoter' regions suggest that PCD in the pericarp is mediated by distinct classes of proteases and is under the hormonal control of both jasmonic acid (JA) and ethylene via ethylene-responsive element binding protein (EREBP) transcription factors (TFs). On the other hand, PCD in endosperm apparently involves only the ethylene pathway, but employs distinct gene family members from those active in the pericarp, and a different set of proteases and TFs. JA biosynthetic genes are hardly activated. Accordingly, JA levels are high in the pericarp but low in the endosperm during middle and late developmental stages. Similarly, genes acting in the deduced ABA biosynthetic pathway and signaling network differ between endosperm and embryo. ABA in the endosperm appears to exert an influence over storage product synthesis via SNF1 kinase. In the embryo, ABA seems to influence the acquisition of desiccation tolerance via ABA response element binding factors, but the data also suggest the existence of an ABA-independent but interactive pathway acting via the dehydration-responsive element binding (DREB) 2A TF. Topics: Abscisic Acid; Amino Acid Motifs; Apoptosis; Calcium; Cluster Analysis; Cyclopentanes; Ethylenes; Gene Expression Profiling; Hordeum; Lipid Metabolism; MADS Domain Proteins; Membrane Proteins; Oligonucleotide Array Sequence Analysis; Oxylipins; Peptide Hydrolases; Plant Proteins; Protein Kinases; Seeds; Signal Transduction; Transcription Factors | 2006 |
Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation.
Plant hormones interact at many different levels to form a network of signaling pathways connected by antagonistic and synergistic interactions. Ethylene and jasmonic acid both act to regulate the plant's responsiveness to a common set of biotic stimuli. In addition ethylene has been shown to negatively regulate the plant's response to the rhizobial bacterial signal, Nod factor. This regulation occurs at an early step in the Nod factor signal transduction pathway, at or above Nod factor-induced calcium spiking. Here we show that jasmonic acid also inhibits the plant's responses to rhizobial bacteria, with direct effects on Nod factor-induced calcium spiking. However, unlike ethylene, jasmonic acid not only inhibits spiking but also suppresses the frequency of calcium oscillations when applied at lower concentrations. This effect of jasmonic acid is amplified in the ethylene-insensitive mutant skl, indicating an antagonistic interaction between these two hormones for regulation of Nod factor signaling. The rapidity of the effects of ethylene and jasmonic acid on Nod factor signaling suggests direct crosstalk between these three signal transduction pathways. This work provides a model by which crosstalk between signaling pathways can rapidly integrate environmental, developmental and biotic stimuli to coordinate diverse plant responses. Topics: Calcium; Calcium Signaling; Cyclopentanes; Ethylenes; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Plant; Lipopolysaccharides; Medicago truncatula; Oxylipins; Plant Proteins; Plant Roots; Signal Transduction; Sinorhizobium meliloti | 2006 |
Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4.
Arabidopsis MPK4 has been implicated in plant defense regulation because mpk4 knockout plants exhibit constitutive activation of salicylic acid (SA)-dependent defenses, but fail to induce jasmonic acid (JA) defense marker genes in response to JA. We show here that mpk4 mutants are also defective in defense gene induction in response to ethylene (ET), and that they are more susceptible than wild-type (WT) to Alternaria brassicicola that induces the ET/JA defense pathway(s). Both SA-repressing and ET/JA-(co)activating functions depend on MPK4 kinase activity and involve the defense regulators EDS1 and PAD4, as mutations in these genes suppress de-repression of the SA pathway and suppress the block of the ET/JA pathway in mpk4. EDS1/PAD4 thus affect SA-ET/JA signal antagonism as activators of SA but as repressors of ET/JA defenses, and MPK4 negatively regulates both of these functions. We also show that the MPK4-EDS1/PAD4 branch of ET defense signaling is independent of the ERF1 transcription factor, and use comparative microarray analysis of ctr1, ctr1/mpk4, mpk4 and WT to show that MPK4 is required for induction of a small subset of ET-regulated genes. The regulation of some, but not all, of these genes involves EDS1 and PAD4. Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Carboxylic Ester Hydrolases; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Deletion; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Mitogen-Activated Protein Kinases; Oxylipins; Plant Diseases; Salicylic Acid; Transcriptional Activation | 2006 |
Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana.
The analysis of expression patterns of transcription-factor genes will be the basis for a better understanding of their biological functions in plants. In this study, we designed and developed an oligo-DNA macroarray consisting of gene-specific probes of 60-65 nucleotides for 288 transcription-factor genes, which cover COL, DOF, ERF, and NAC family genes. To investigate transcription-factor genes that are cooperatively regulated by jasmonate and ethylene in arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants, we analyzed the expression profile of transcription-factor genes using the oligo-DNA macroarray technique in arabidopsis plants treated with methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid. Then, transcript levels of candidate genes-which were selected based on the result of macroarray analysis-were evaluated by the quantitative real-time RT-PCR method. Finally, we identified an ERF family gene that is cooperatively regulated by both hormones, and designated as cooperatively regulated by ethylene and jasmonate 1 (CEJ1). Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oligonucleotide Array Sequence Analysis; Oxylipins; Time Factors; Transcription Factors; Up-Regulation | 2006 |
A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants. Topics: Aging; Amino Acid Substitution; Arabidopsis; Arabidopsis Proteins; Ascomycota; Botrytis; Catalytic Domain; Cell Death; Cyclopentanes; Epistasis, Genetic; Ethylenes; GTP Phosphohydrolases; Mitochondria; Mutation; Oxylipins; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Solanum lycopersicum | 2006 |
Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo.
Growth of pea (Pisum sativum L.) plants with 50 microM CdCl2 for 15 d produced a reduction in the number and length of lateral roots, and changes in structure of the principal roots affecting the xylem vessels. Cadmium induced a reduction in glutathione (GSH) and ascorbate (ASC) contents, and catalase (CAT), GSH reductase (GR) and guaiacol peroxidase (GPX) activities. CuZn-superoxide dismutase (SOD) activity was also diminished by the Cd treatment, although Mn-SOD was slightly increased. CAT and CuZn-SOD were down-regulated at transcriptional level, while Mn-SOD, Fe-SOD and GR were up-regulated. Analysis of reactive oxygen species (ROS) and nitric oxide (NO) levels by fluorescence and confocal laser microscopy (CLM) showed an over-accumulation of O2*- and H2O2, and a reduction in the NO content in lateral and principal roots. ROS overproduction was dependent on changes in intracellular Ca+2 content, and peroxidases and NADPH oxidases were involved. Cadmium also produced an increase in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) contents. The rise of ET and ROS, and the NO decrease are in accordance with senescence processes induced by Cd, and the increase of JA and SA could regulate the cellular response to cope with damages imposed by cadmium. Topics: Antioxidants; Cadmium; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Microscopy, Confocal; Molecular Sequence Data; Nitric Oxide; Oxidation-Reduction; Oxidative Stress; Oxygen; Oxylipins; Pisum sativum; Plant Roots; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2006 |
Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses.
Small-molecule hormones govern every aspect of the biology of plants. Many processes, such as growth, are regulated in similar ways by multiple hormones, and recent studies have revealed extensive crosstalk among different hormonal signaling pathways. These results have led to the proposal that a common set of signaling components may integrate inputs from multiple hormones to regulate growth. In this study, we tested this proposal by asking whether different hormones converge on a common set of transcriptional targets in Arabidopsis seedlings. Using publicly available microarray data, we analyzed the transcriptional effects of seven hormones, including abscisic acid, gibberellin, auxin, ethylene, cytokinin, brassinosteroid, and jasmonate. A high-sensitivity analysis revealed a surprisingly low number of common target genes. Instead, different hormones appear to regulate distinct members of protein families. We conclude that there is not a core transcriptional growth-regulatory module in young Arabidopsis seedlings. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Biomarkers; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Regulation, Plant; Gibberellins; Growth Substances; Indoleacetic Acids; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Growth Regulators; Regulatory Elements, Transcriptional; Seedlings; Signal Transduction; Transcription, Genetic | 2006 |
Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants.
The higher plant mitochondrial electron transport chain contains, in addition to the cytochrome chain, an alternative pathway that terminates with a single homodimeric protein, the alternative oxidase (AOX). We recorded temporary inhibition of cytochrome capacity respiration and activation of AOX pathway capacity in tobacco plants (Nicotiana tabacum L. cv BelW3) fumigated with ozone (O(3)). The AOX1a gene was used as a molecular probe to investigate its regulation by signal molecules such as hydrogen peroxide, nitric oxide (NO), ethylene (ET), salicylic acid, and jasmonic acid (JA), all of them reported to be involved in the O(3) response. Fumigation leads to accumulation of hydrogen peroxide in mitochondria and early accumulation of NO in leaf tissues. Although ET accumulation was high in leaf tissues 5 h after the start of O(3) fumigation, it declined during the recovery period. There were no differences in the JA and 12-oxo-phytodienoic acid levels of treated and untreated plants. NO, JA, and ET induced AOX1a mRNA accumulation. Using pharmacological inhibition of ET and NO, we demonstrate that both NO- and ET-dependent pathways are required for O(3)-induced up-regulation of AOX1a. However, only NO is indispensable for the activation of AOX1a gene expression. Topics: Cyclopentanes; Cytochromes c; Enzyme Induction; Ethylenes; Gene Expression Regulation, Plant; Hydrogen Peroxide; Mitochondria; Mitochondrial Proteins; Molecular Sequence Data; Nicotiana; Nitric Oxide; Oxidoreductases; Oxylipins; Ozone; Plant Leaves; Plant Proteins; Up-Regulation | 2006 |
HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis.
Histone acetylation is modulated through the action of histone acetyltransferases and deacetylases, which play key roles in the regulation of eukaryotic gene expression. Previously, we have identified a yeast histone deacetylase REDUCED POTASSIUM DEPENDENCY3 (RPD3) homolog, HISTONE DEACETYLASE19 (HDA19) (AtRPD3A), in Arabidopsis thaliana. Here, we report further study of the expression and function of HDA19. Analysis of Arabidopsis plants containing the HDA19:beta-glucuronidase fusion gene revealed that HDA19 was expressed throughout the life of the plant and in most plant organs examined. In addition, the expression of HDA19 was induced by wounding, the pathogen Alternaria brassicicola, and the plant hormones jasmonic acid and ethylene. Using green fluorescent protein fusion, we demonstrated that HDA19 accumulated in the nuclei of Arabidopsis cells. Overexpression of HDA19 in 35S:HDA19 plants decreased histone acetylation levels, whereas downregulation of HDA19 in HDA19-RNA interference (RNAi) plants increased histone acetylation levels. In comparison with wild-type plants, 35S:HDA19 transgenic plants had increased expression of ETHYLENE RESPONSE FACTOR1 and were more resistant to the pathogen A. brassicicola. The expression of jasmonic acid and ethylene regulated PATHOGENESIS-RELATED genes, Basic Chitinase and beta-1,3-Glucanase, was upregulated in 35S:HDA19 plants but downregulated in HDA19-RNAi plants. Our studies provide evidence that HDA19 may regulate gene expression involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Topics: Arabidopsis; Arabidopsis Proteins; Chitinases; Cyclopentanes; DNA-Binding Proteins; Down-Regulation; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glucan Endo-1,3-beta-D-Glucosidase; Histone Deacetylases; Immunity, Innate; Nuclear Proteins; Oxylipins; Plant Diseases; Plant Proteins; Recombinant Fusion Proteins; RNA Interference; Signal Transduction; Transcription Factors; Up-Regulation | 2005 |
Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco.
Interactions between the phytohormones ethylene, salicylic acid (SA), and jasmonic acid (JA) are thought to regulate the specificity of induced plant defenses against microbial pathogens and herbivores. However, the nature of these interactions leading to induced plant volatile emissions during pathogen infection is unclear. We previously demonstrated that a complex volatile blend including (E)-beta-ocimene, methyl salicylate (MeSA), and numerous sesquiterpenes was released by tobacco plants, Nicotiana tabacum K326, infected with an avirulent/incompatible strain of Pseudomonas syringae pv. tomato (Pst DC3000). In contrast, a volatile blend, mainly consisting of MeSA and two unidentified sesquiterpenes, was released by plants infected with P. syringae pv. tabaci (Pstb) in a virulent/compatible interaction. In this study, we examined the interaction of multiple pathogen stresses, phytohormone signaling, and induced volatile emissions in tobacco. Combined pathogen infection involved the inoculation of one leaf with Pst DC 3000 and of a second leaf, from the same plant, with Pstb. Combined infection reduced emissions of ocimene and MeSA compared to plants infected with Pst DC 3000 alone, but with no significant changes in total sesquiterpene emissions. In the compatible interaction, Pstb elicited a large ethylene burst with a peak emission occurring 3 days after inoculation. In contrast, the incompatible interaction involving Pst DC3000 displayed no such ethylene induction. Pstb-induced ethylene production was not significantly altered by Pst DC3000 in the combined infection. We postulated that Pstb-induced ethylene production may play a regulatory role in altering the typical volatile emission in tobacco in response to Pst DC3000 infection. To clarify the role of ethylene, we dynamically applied ethylene to the headspace of tobacco plants following infection with Pst DC3000. Consistent with Pstb-induced ethylene, exogenous ethylene reduced both ocimene and MeSA emissions, and selectively altered the ratios and amounts of induced sesquiterpene emissions. Our findings suggest that ethylene can regulate the magnitude and blend of induced volatile emissions during pathogen infection. Topics: Cyclopentanes; Ethylenes; Immunity, Innate; Nicotiana; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Time Factors; Virulence; Volatilization | 2005 |
Jasmonates are essential factors inducing gummosis in tulips: mode of action of jasmonates focusing on sugar metabolism.
The purpose of this study was to know the mechanism of jasmonates to induce gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) shoots, especially on the focus of sugar metabolism. Gummosis in the first internode of tulip plants was induced by the application of methyl jasmonate (JA-Me, 1% w/w in lanolin) and jasmonic acid (JA, 1% w/w in lanolin) 5 days after application and strongly stimulated by the simultaneous application of ethylene-releasing compound, ethephon (2-chloroethylphosphonic acid, 1% w/w in lanolin), although ethephon alone had little effect. JA-Me stimulated ethylene production of the first internodes of tulips, ethylene production increasing up to more than 5 times at day 1 and day 3 after the application. On the other hand, application of ethephon did not increase endogenous levels of jasmonates in tulip stems. Analysis of composition of tulip gums revealed that they were consisted of glucuronoarabinoxylan with an average molecular weight of ca. 700 kDa. JA-Me strongly decreased the total amount of soluble sugars in tulip stems even in 1 day after application, being ca. 50% of initial values 5 days after application, but ethephon did not. However, both JA-Me and ethephon had almost no effect on the neutral sugar compositions of soluble sugars mainly consisting of glucose, mannose and xylose in ratio of 20:2:1 and traces of arabinose. Both JA-Me and ethephon applied exogenously stimulated senescence of tulip shoots shown by the loss of chlorophyll. These results strongly suggest that the essential factor of gummosis in tulips is jasmonates affecting the sugar metabolism in tulip shoots. The mode of action of jasmonates to induce gummosis of tulip shoots is discussed in relation to ethylene production, sugar metabolism and senescence. Topics: Acetates; Carbohydrate Metabolism; Cell Wall; Cyclopentanes; Ethylenes; Organophosphorus Compounds; Oxylipins; Plant Stems; Signal Transduction; Tulipa | 2005 |
Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle.
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA Transposable Elements; Ethylenes; Gene Expression Regulation, Plant; Glucuronidase; Molecular Sequence Data; Mutation; Oxylipins; Plant Growth Regulators; Plant Roots; Plant Structures; Plants, Genetically Modified; Pseudomonas; Pseudomonas fluorescens; Pseudomonas putida; Pseudomonas syringae; Salicylic Acid; Sequence Homology, Amino Acid; Species Specificity | 2005 |
Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants.
Plants are constantly exposed to environmental changes and need to integrate multiple external stress cues. Calcium-dependent protein kinases (CDPKs) are implicated as major primary Ca2+ sensors in plants. CDPK activation, like activation of mitogen-activated protein kinases (MAPKs), is triggered by biotic and abiotic stresses, although distinct stimulus-specific stress responses are induced. To investigate whether CDPKs are part of an underlying mechanism to guarantee response specificity, we identified CDPK-controlled signaling pathways. A truncated form of Nicotiana tabacum CDPK2 lacking its regulatory autoinhibitor and calcium-binding domains was ectopically expressed in Nicotiana benthamiana. Infiltrated leaves responded to an abiotic stress stimulus with the activation of biotic stress reactions. These responses included synthesis of reactive oxygen species, defense gene induction, and SGT1-dependent cell death. Furthermore, N-terminal CDPK2 signaling triggered enhanced levels of the phytohormones jasmonic acid, 12-oxo-phytodienoic acid, and ethylene but not salicylic acid. These responses, commonly only observed after challenge with a strong biotic stimulus, were prevented when the CDPK's intrinsic autoinhibitory peptide was coexpressed. Remarkably, elevated CDPK signaling compromised stress-induced MAPK activation, and this inhibition required ethylene synthesis and perception. These data indicate that CDPK and MAPK pathways do not function independently and that a concerted activation of both pathways controls response specificity to biotic and abiotic stress. Topics: Apoptosis; Blotting, Northern; Calcium; Cyclopentanes; Ethylenes; Fatty Acids, Unsaturated; Green Fluorescent Proteins; Immunoblotting; Mitogen-Activated Protein Kinases; Mutagenesis, Site-Directed; Nicotiana; Oxylipins; Plant Lectins; Plasmids; Protein Kinases; Reactive Oxygen Species; Receptor Cross-Talk; Signal Transduction | 2005 |
Molecular players regulating the jasmonate signalling network.
Many plant developmental and stress responses require the coordinated interaction of the jasmonate and other signalling pathways, such as those for ethylene, salicylic acid and abscisic acid. Recent research in Arabidopsis has uncovered several key players that regulate crosstalk between these signalling pathways and that shed light on the molecular mechanisms modulating this coordinated interaction. Genes that are involved in the regulation of protein stability through the ubiquitin-proteasome pathway (COI1, AXR1 and SGT1b), signalling proteins (MPK4) and transcription factors (AtMYC2, ERF1, NPR1 and WRKY70) form a regulatory network that allows the plant to fine-tune specific responses to different stimuli. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Indoleacetic Acids; Light; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction | 2005 |
The Pseudomonas syringae avrRpt2 gene contributes to virulence on tomato.
In order to cause disease on plants, gram-negative phytopathogenic bacteria introduce numerous virulence factors into the host cell in order to render host tissue more hospitable for pathogen proliferation. The mode of action of such bacterial virulence factors and their interaction with host defense pathways remain poorly understood. avrRpt2, a gene from Pseudomonas syringae pv. tomato JL1065, has been shown to promote the virulence of heterologous P. syringae strains on Arabidopsis thaliana. However, the contribution of avrRpt2 to the virulence of JL1065 has not been examined previously. We show that a mutant derivative of JL1065 that carries a disruption in avrRpt2 is impaired in its ability to cause disease on tomato (Lycopersicon esculentum), indicating that avrRpt2 also acts as a virulence gene in its native strain on a natural host. The virulence activity of avrRpt2 was detectable on tomato lines that are defective in either ethylene perception or the accumulation of salicylic acid, but could not be detected on a tomato mutant insensitive to jasmonic acid. The enhanced virulence conferred by the expression of avrRpt2 in JL1065 was not associated with the suppression of several defense-related genes induced during the infection of tomato. Topics: Arabidopsis; Bacterial Proteins; Cyclopentanes; Ethylenes; Genes, Bacterial; Mutation; Oxylipins; Plant Diseases; Pseudomonas syringae; Salicylic Acid; Solanum lycopersicum; Virulence | 2005 |
Rice fatty acid alpha-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling.
Plant fatty acid alpha-dioxygenases (DOXs) catalyze the stereospecific conversion of fatty acids into the corresponding (R)-2-hydroperoxy fatty acids. In several plant species the corresponding gene was shown to be induced by pathogen infection, herbivore attack and environmental stresses. The precise signaling pathway accountable for the induction remains unidentified. In the present study, the effects of bacterial infection, oxidative- and heavy metal-stresses, and plant signaling molecules such as jasmonate, salicylic acid (SA), and ethylene (ET) on expression of a fatty acid alpha-DOX (OsDOX) gene in rice seedlings were investigated. The rice blight bacteria, Xanthomonas oryzae, elicited the accumulation of OsDOX transcripts in the leaves in both the incompatible and compatible interactions. Treating the seedling with CuSO4 also significantly enhanced the OsDOX expression. The degree of induction was shown to be mostly parallel to the level of endogenous jasmonic acid (JA) in the leaves. In contrast, SA was little effective and ET down-regulated not only the OsDOX expression but also the endogenous level of JA in rice seedlings. These results suggested that the OsDOX gene expression by a variety of stress-related stimuli was activated through jasmonate signaling and was negatively regulated by ET. Topics: Cyclopentanes; Dioxygenases; Enzyme Induction; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Metals, Heavy; Oryza; Oxidative Stress; Oxylipins; Peroxidases; Plant Proteins; Signal Transduction; Xanthomonas | 2005 |
Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack.
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plant's defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response. Topics: Alternaria; Animals; Arabidopsis; Base Sequence; Cyclopentanes; DNA, Plant; Ethylenes; Gene Expression Profiling; Genes, Plant; Genetic Markers; Insecta; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid; Signal Transduction; Transcription, Genetic | 2005 |
Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression.
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NAC TF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor- and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Gene Expression; Genes, Plant; Genome, Plant; Oxylipins; Phylogeny; Plant Diseases; Repressor Proteins; Signal Transduction; Trans-Activators; Transcription Factors | 2005 |
Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays.
The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in alpha,beta-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes. Southern blot analysis and mapping of individual OPR genes to maize chromosomes using oat maize chromosome addition lines provides independent confirmation of this number of OPR genes in maize. A survey of massively parallel signature sequencing (MPSS) assays revealed that transcripts of each OPR gene accumulate differentially in diverse organs of maize plants suggesting distinct biological functions. Similarly, RNA blot analysis revealed that distinct OPR genes are differentially regulated in response to stress hormones, wounding or pathogen infection. ZmOPR1 and/or ZmOPR2 appear to function in defense responses to pathogens because they are transiently induced by salicylic acid (SA), chitooligosaccharides, and by infection with Cochliobolus carbonum, Cochliobolus heterostrophus and Fusarium verticillioides, but not by wounding. In contrast to these two genes, transcript levels of ZmOPR6 and ZmOPR7 and/or ZmOPR8 are highly induced by wounding or treatments with the wound-associated signaling molecules JA, ethylene and abscisic acid. However, accumulation of ZmOPR6 and ZmOPR7/8 mRNAs was not upregulated by SA treatments or by pathogen infection suggesting specific involvement in the wound-induced defense responses. None of the treatments induced transcripts of ZmOPR3, 4, or 5. Topics: Abscisic Acid; Chromosome Mapping; Chromosomes, Plant; Cyclopentanes; Ethylenes; Exons; Gene Expression Profiling; Gene Expression Regulation, Plant; Introns; Multigene Family; Organ Specificity; Oxidoreductases Acting on CH-CH Group Donors; Oxylipins; Phylogeny; Plant Growth Regulators; Salicylic Acid; Zea mays | 2005 |
Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement.
The Arabidopsis thaliana (L.) Heyhn. genome contains 45 genes that show substantial sequence similarity to the tobacco ( Nicotiana tabacum L.) HIN1 (harpin-induced) gene and the Arabidopsis NDR1 (non-race-specific disease resistance) gene. Of these, the nine ( NHL1 to NHL3, NHL8 to NHL12 and NHL22) that bear the highest identity to HIN1 were selected and their expression in various situations was examined. We found that NHL10 behaves like the tobacco HIN1 gene in that its transcripts are abundant in senescing leaves and they specifically accumulate during the hypersensitive response (HR) caused by exposure to an avirulent Cucumber mosaic virus (CMV) strain. Spermine, a novel inducer of tobacco PR (pathogenesis-related) genes, was found to up-regulate expression of NHL3, NHL10 and NDR1. Green fluorescent protein-fusion experiments indicated that NHL2 and NHL10, and possibly NDR1 are localized in the chloroplasts. Studies using Arabidopsis mutants defective in salicylic acid (SA), ethylene and jasmonic acid signalling revealed that the senescence-associated expression of NHL10 is mediated by a pathway that involves SA but that NHL10 expression during CMV-induced HR and spermine treatment is totally independent of SA. Topics: Arabidopsis; Arabidopsis Proteins; Cucumovirus; Cyclopentanes; Ethylenes; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Organ Specificity; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Leaves; Polyamines; Salicylic Acid; Serine-Arginine Splicing Factors; Signal Transduction; Spermine; Transcription Factors; Up-Regulation | 2004 |
Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling.
Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis. Topics: Arabidopsis; Ascomycota; Copper Sulfate; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Silver Nitrate; Thiazoles | 2004 |
The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense.
Cross talk between salicylic acid (SA)- and jasmonic acid (JA)-dependent defense signaling has been well documented in plants, but how this cross talk is executed and the components involved remain to be elucidated. We demonstrate that the plant-specific transcription factor WRKY70 is a common component in SA- and JA-mediated signal pathways. Expression of WRKY70 is activated by SA and repressed by JA. The early induction of WRKY70 by SA is NPR1-independent, but functional NPR1 is required for full-scale induction. Epistasis analysis suggested that WRKY70 is downstream of NPR1 in an SA-dependent signal pathway. Modulation of WRKY70 transcript levels by constitutive overexpression increases resistance to virulent pathogens and results in constitutive expression of SA-induced pathogenesis-related genes. Conversely, antisense suppression of WRKY70 activates JA-responsive/COI1-dependent genes. The effect of WRKY70 is not caused by subsequent changes in SA or JA levels. We suggest that WRKY70 acts as an activator of SA-induced genes and a repressor of JA-responsive genes, integrating signals from these mutually antagonistic pathways. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Molecular Sequence Data; Oxylipins; Plant Diseases; Plant Proteins; Salicylic Acid; Signal Transduction; Transcription Factors | 2004 |
Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine.
Gram-negative bacteria use a variety of virulence factors including phytotoxins, exopolysaccharides, effectors secreted by the type III secretion system, and cell-wall-degrading enzymes to promote parasitism in plants. However, little is known about how these virulence factors alter plant cellular responses to promote disease. In this study, we show that virulent Pseudomonas syringae strains activate the transcription of an Arabidopsis ethylene response factor (ERF) gene, RAP2.6, in a coronatine insensitive 1 (COI1)-dependent manner. A highly sensitive RAP2.6 promoter-firefly luciferase (RAP2.6-LUC) reporter line was developed to monitor activities of various bacterial virulence genes. Analyses of P. syringae pv. tomato DC3000 mutants indicated that both type III secretion system and the phytotoxin coronatine are required for RAP2.6 induction. We show that at least five individual type III effectors, avirulence B (AvrB), AvrRpt2, AvrPphB, HopPtoK, and AvrPphEPto, contributed to RAP2.6 induction. Gene-for-gene recognition was not involved in RAP2.6 induction because plants lacking RPM1 and RPS2 responded normally to AvrB and AvrRpt2 in RAP2.6 expression. Interestingly, the role of coronatine in RAP2.6 induction can be partially substituted by the addition of avrB in DC3000, suggesting that AvrB may mimic coronatine. These results suggest that P. syringae type III effectors and coronatine act by augmenting a COI1-dependent pathway to promote parasitism. Topics: Amino Acids; Arabidopsis; Arabidopsis Proteins; Bacterial Proteins; Cyclopentanes; Ethylenes; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Plant; Immunity, Innate; Indenes; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Promoter Regions, Genetic; Pseudomonas syringae; Salicylic Acid; Virulence | 2004 |
Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.
Roles of jasmonate and ethylene signalling and their interaction in yeast elicitor-induced biosynthesis of a phytoalexin, beta-thujaplicin, were investigated in Cupressus lusitanica cell cultures. Yeast elicitor, methyl jasmonate, and ethylene all induce the production of beta-thujaplicin. Elicitor also stimulates the biosynthesis of jasmonate and ethylene before the induction of beta-thujaplicin accumulation. The elicitor-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of jasmonate and ethylene biosynthesis or signal transduction. These results indicate that the jasmonate and ethylene signalling pathways are integral parts of the elicitor signal transduction leading to beta-thujaplicin accumulation. Methyl jasmonate treatment can induce ethylene production, whereas ethylene does not induce jasmonate biosynthesis; methyl jasmonate-induced beta-thujaplicin accumulation can be partly blocked by inhibitors of ethylene biosynthesis and signalling, while blocking jasmonate biosynthesis inhibits almost all ethylene-induced beta-thujaplicin accumulation. These results indicate that the ethylene and jasmonate pathways interact in mediating beta-thujaplicin production, with the jasmonate pathway working as a main control and the ethylene pathway as a fine modulator for beta-thujaplicin accumulation. Both the ethylene and jasmonate signalling pathways can be regulated upstream by Ca(2+). Ca(2+) influx negatively regulates ethylene production, and differentially regulates elicitor- or methyl jasmonate-stimulated ethylene production. Topics: Cells, Cultured; Cupressus; Cyclopentanes; Ethylenes; Kinetics; Monoterpenes; Oxylipins; Plant Growth Regulators; Signal Transduction; Tropolone | 2004 |
Differential timing of spider mite-induced direct and indirect defenses in tomato plants.
Through a combined metabolomics and transcriptomics approach we analyzed the events that took place during the first 5 d of infesting intact tomato (Lycopersicon esculentum) plants with spider mites (Tetranychus urticae). Although the spider mites had caused little visible damage to the leaves after 1 d, they had already induced direct defense responses. For example, proteinase inhibitor activity had doubled and the transcription of genes involved in jasmonate-, salicylate-, and ethylene-regulated defenses had been activated. On day four, proteinase inhibitor activity and particularly transcript levels of salicylate-regulated genes were still maintained. In addition, genes involved in phospholipid metabolism were up-regulated on day one and those in the secondary metabolism on day four. Although transcriptional up-regulation of the enzymes involved in the biosynthesis of monoterpenes and diterpenes already occurred on day one, a significant increase in the emission of volatile terpenoids was delayed until day four. This increase in volatile production coincided with the increased olfactory preference of predatory mites (Phytoseiulus persimilis) for infested plants. Our results indicate that tomato activates its indirect defenses (volatile production) to complement the direct defense response against spider mites. Topics: Acyclic Monoterpenes; Animals; Blotting, Northern; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Monoterpenes; Oligonucleotide Array Sequence Analysis; Oxylipins; Plant Diseases; Protease Inhibitors; Salicylic Acid; Sesquiterpenes; Solanum lycopersicum; Tetranychidae; Volatilization | 2004 |
Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis.
Ethylene (ET) and jasmonic acid (JA) have opposite effects on ozone (O(3))-induced spreading cell death; ET stimulates, and is required for the spreading cell death, whereas JA protects tissues. We studied the underlying molecular mechanisms with the O(3)-sensitive, JA-insensitive jasmonate resistant 1 (jar1), and the O(3)-tolerant, ET-insensitive ethylene insensitive 2 (ein2) mutants. Blocking ET perception pharmacologically with norbornadiene (NBD) in jar1, or ET signaling genetically in the jar1 ein2 double mutant prevented the spread of cell death. This suggests that EIN2 function is epistatic to JAR1, and that the JAR1-dependent JA pathway halts oxidative cell death by directly inhibiting ET signaling. JAR1-dependent suppression of the ET pathway was apparent also as increased EIN2-dependent gene expression and ET hypersensitivity of jar1. Physiological experiments suggested that the target of JA is upstream of Constitutive Triple Response 1 (CTR1), but downstream of ET biosynthesis. Gene expression analysis of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated and O(3)-exposed ein2 and jar1 revealed reciprocal antagonism: the EIN2-mediated suppression of the JA pathway. The results imply that the O(3)-induced spreading cell death is stimulated by early, rapid accumulation of ET, which can suppress the protecting function of JA thereby allowing cell death to proceed. Extended spreading cell death induces late accumulation of JA, which inhibits the propagation of cell death through inhibition of the ET pathway. Topics: Arabidopsis; Arabidopsis Proteins; Cell Death; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Mutation; Nucleotidyltransferases; Oxylipins; Ozone; Receptors, Cell Surface; Signal Transduction | 2004 |
RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum.
When challenged with the crucifer pathogen Colletotrichum higginsianum, Arabidopsis thaliana ecotype Columbia (Col-0) was colonized by the fungus within 2 to 3 days, developing brown necrotic lesions surrounded by a yellow halo. Lesions spread from the inoculation site within 3 to 4 days, and subsequently continued to expand until they covered the entire leaf. Electron microscopy confirmed that C. higginsianum is a hemibiotroph on Arabidopsis, feeding initially on living cells as a biotroph before switching to a necrotrophic mode of growth. A collection of 37 ecotypes of Arabidopsis varied in their responses to infection by C. higginsianum. The ecotype Eil-0 was highly resistant, with symptoms limited to necrotic flecking and with only very limited fungal colonization. Analyses suggested that the hypersensitive response and reactive oxygen species may be important in this defense response. Expression analyses with cDNA microarrays indicated that the defense reaction depends primarily on the jasmonic acid- and ethylene-dependent signaling pathways and, to a lesser extent, on the salicylate-dependent pathway. Crosses between the Eil-0 and Col-0 ecotypes suggested that the resistance in Eil-0 was dominant and was conferred by a single locus, which we named RCH1. RCH1 is the first resistance locus to be identified from Arabidopsis against the hemibiotrophic fungus genus Colletotrichum. Topics: Arabidopsis; Arabidopsis Proteins; Colletotrichum; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Microscopy, Electron; Oligonucleotide Array Sequence Analysis; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Leaves; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Thiazoles | 2004 |
Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum.
Ethylene response factor 1 (ERF1) is a transcriptional factor from Arabidopsis thaliana that regulates plant resistance to the necrotrophic fungi Botrytis cinerea and Plectosphaerella cucumerina and whose overexpression enhances resistance to these fungi. Here, we show that ERF1 also mediates Arabidopsis resistance to the soilborne fungi Fusarium oxysporum sp. conglutinans and F. oxysporum f. sp. lycopersici, because its constitutive expression in Arabidopsis confers enhanced resistance to these pathogens. Expression of ERF1 was upregulated after inoculation with F. oxysporum f. sp. conglutinans, and this response was blocked in ein2-5 and coi1-1 mutants, impaired in the ethylene (ET) and jasmonic acid (JA) signal pathways, respectively, which further indicates that ERF1 is a downstream component of ET and JA defense responses. The signal transduction network controlling resistance to F. oxysporum fungi was explored using signaling-defective mutants in ET (ein2-5), JA (jar1-1), and salicylic acid (SA) (NahG, sid2-1, eds5-1, npr1-1, pad4-1, eds1-1, and pad2-1) transduction pathways. This analysis revealed that Arabidopsis resistance to F. oxysporum requires the ET, JA, and SA signaling pathways and the NPR1 gene, although it is independent of the PAD4 and EDS1 functions. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Nuclear Proteins; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Signal Transduction; Soil Microbiology; Transcription Factors | 2004 |
Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice.
Chitinase is a pathogenesis-related protein that hydrolyzes chitin, a major component of fungal cell walls. Two-week-old rice seedling leaf, leaf sheath and root tissues responded to an exogenous treatment by jasmonic acid (JA) with induction of the chitinases as determined by immunoblot analysis using an anti-endochitinase antibody. Induced accumulation of these chitinases was observed within 24 to 48 h in the leaf sheaths, leaves and roots. Besides, ethylene generator ethephon and abiotic stressor copper could also induce chitinases accumulation among various plant hormones and stress agents examined. Cycloheximide effectively blocked their accumulation by JA, suggesting that de novo protein synthesis is required. Partial blockage of the induced accumulation of chitinases by NADPH oxidase inhibitor and free radical scavengers suggested involvement of reactive oxygen species. Moreover, induced accumulation of these chitinases also by methyl jasmonate and certain protein phosphatase inhibitors indicated their potential importance and wider role in rice seedlings. Topics: Acetates; Chitinases; Cycloheximide; Cyclopentanes; Enzyme Inhibitors; Ethylenes; Onium Compounds; Organophosphorus Compounds; Oryza; Oxylipins; Phosphoprotein Phosphatases; Plant Growth Regulators; Plant Structures; Reactive Oxygen Species | 2004 |
The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis.
Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance, rhizobacteria-mediated ISR is not associated with changes in the expression of genes encoding pathogenesis-related proteins. To identify ISR-related genes, we surveyed the transcriptional response of over 8,000 Arabidopsis genes during rhizobacteria-mediated ISR. Locally in the roots, ISR-inducing Pseudomonas fluorescens WCS417r bacteria elicited a substantial change in the expression of 97 genes. However, systemically in the leaves, none of the approximately 8,000 genes tested showed a consistent change in expression in response to effective colonization of the roots by WCS417r, indicating that the onset of ISR in the leaves is not associated with detectable changes in gene expression. After challenge inoculation of WCS417r-induced plants with the bacterial leaf pathogen P. syringae pv. tomato DC3000, 81 genes showed an augmented expression pattern in ISR-expressing leaves, suggesting that these genes were primed to respond faster or more strongly upon pathogen attack. The majority of the primed genes was predicted to be regulated by jasmonic acid or ethylene signaling. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Oxylipins; Plant Diseases; Plant Leaves; Plant Roots; Pseudomonas; Pseudomonas fluorescens; Rhizobium; Signal Transduction; Transcription, Genetic | 2004 |
Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Galium aparine).
The effects of indole-3-acetic acid and auxin herbicides on endogenous jasmonic acid (JA) concentrations were studied in relation to changes in ethylene and abscisic acid (ABA) levels in cleavers (Galium aparine). When plants were root-treated with increasing concentrations of indole-3-acetic acid (IAA), ethylene biosynthesis was stimulated in response to the accumulation of endogenous IAA in the shoot tissue. Within 25h of treatment, stimulated ethylene formation was accompanied by increases in immunoreactive concentrations of JA and ABA, which reached maxima of 4.5-fold and 26-fold of the control, respectively, at 100 microM of applied IAA. Corresponding effects were obtained using synthetic auxins and when the ethylene-releasing compound ethephon was applied exogenously. This represents the first report, to our knowledge, of an auxin-mediated increase in JA levels. The increase in JA may be triggered by ethylene. Topics: Abscisic Acid; Cyclopentanes; Ethylenes; Galium; Herbicides; Indoleacetic Acids; Lyases; Organophosphorus Compounds; Oxylipins; Plant Growth Regulators | 2004 |
Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus.
In Catharanthus roseus cell suspensions, the expression of several terpenoid indole alkaloid biosynthetic genes, including two genes encoding strictosidine synthase (STR) and tryptophan decarboxylase (TDC), is coordinately induced by fungal elicitors such as yeast extract. To identify molecular mechanisms regulating the expression of these genes, a yeast one-hybrid screening was performed with an elicitor-responsive part of the TDC promoter. This screening identified three members of the Cys(2)/His(2)-type (transcription factor IIIA-type) zinc finger protein family from C. roseus, ZCT1, ZCT2, and ZCT3. These proteins bind in a sequence-specific manner to the TDC and STR promoters in vitro and repress the activity of these promoters in trans-activation assays. In addition, the ZCT proteins can repress the activating activity of APETALA2/ethylene response-factor domain transcription factors, the ORCAs, on the STR promoter. The expression of the ZCT genes is rapidly induced by yeast extract and methyljasmonate. These results suggest that the ZCT proteins act as repressors in the regulation of elicitor-induced secondary metabolism in C. roseus. Topics: Alkaloids; Amino Acid Sequence; Aromatic-L-Amino-Acid Decarboxylases; Blotting, Northern; Carbon-Nitrogen Lyases; Catharanthus; Cyclopentanes; DNA; DNA, Complementary; Escherichia coli; Ethylenes; Genetic Vectors; Models, Biological; Molecular Sequence Data; Oxylipins; Plant Proteins; Plasmids; Promoter Regions, Genetic; Protein Binding; RNA; RNA, Messenger; Sequence Homology, Amino Acid; Transcription, Genetic; Transcriptional Activation; Two-Hybrid System Techniques; Zinc Fingers | 2004 |
Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure.
Changing environmental conditions, atmospheric pollutants and resistance reactions to pathogens cause production of reactive oxygen species (ROS) in plants. ROS in turn trigger the activation of signaling cascades such as the mitogen-activated protein kinase (MAPK) cascade and accumulation of plant hormones, jasmonic acid, salicylic acid (SA), and ethylene (ET). We have used ozone (O3) to generate ROS in the apoplast of wild-type Col-0 and hormonal signaling mutants of Arabidopsis thaliana and show that this treatment caused a transient activation of 43 and 45 kDa MAPKs. These were identified as AtMPK3 and AtMPK6. We also demonstrate that initial AtMPK3 and AtMPK6 activation in response to O3 was not dependent on ET signaling, but that ET is likely to have secondary effects on AtMPK3 and AtMPK6 function, whereas functional SA signaling was needed for full-level AtMPK3 activation by O3. In addition, we show that AtMPK3, but not AtMPK6, responded to O3 transcriptionally and translationally during O3 exposure. Finally, we show in planta that activated AtMPK3 and AtMPK6 are translocated to the nucleus during the early stages of O3 treatment. The use of O3 to induce apoplastic ROS formation offers a non-invasive in planta system amenable to reverse genetics that can be used for the study of stress-responsive MAPK signaling in plants. Topics: Active Transport, Cell Nucleus; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Enzyme Activation; Ethylenes; Gene Expression Regulation, Plant; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Oxylipins; Ozone; Salicylic Acid; Time Factors | 2004 |
Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis.
Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. Topics: Acetates; Arabidopsis; Ascomycota; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Hordeum; Immunity, Innate; Oxylipins; Plant Diseases; Plant Leaves; Plants, Genetically Modified; Salicylic Acid; Signal Transduction | 2004 |
Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis.
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses. Topics: Abscisic Acid; Alcohol Oxidoreductases; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cyclopentanes; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Immunity, Innate; Molecular Sequence Data; Oxylipins; Plant Diseases; Signal Transduction; Trans-Activators; Transcriptional Activation; Up-Regulation | 2004 |
Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance.
The ethylene, jasmonic acid and osmotic signaling pathways respond to environmental stimuli and in order to understand how plants adapt to biotic and abiotic stresses it is important to understand how these pathways interact each other. In this paper, we report a novel ERF protein--jasmonate and ethylene-responsive factor 3 (JERF3)--that unites these pathways. JERF3, which functions as an in vivo transcription activator in yeast, binds to the GCC box, an element responsive to ethylene/JA signaling, as well as to DRE, a dehydration-responsive element that responds to dehydration, high salt and low-temperature. Expression of JERF3 in tomato is mainly induced by ethylene, JA, cold, salt or ABA. Constitutive expression of JERF3 in transgenic tobacco significantly activated expression of pathogenesis-related genes that contained the GCC box, resulting in enhanced tolerance to salt. These results indicate that JERF3 functions as a linker in ethylene- and osmotic stress-signaling pathways. Topics: Abscisic Acid; Adaptation, Physiological; Amino Acid Sequence; Base Sequence; Cell Nucleus; Cold Temperature; Cyclopentanes; DNA, Complementary; Ethylenes; Gene Expression Regulation, Plant; Green Fluorescent Proteins; Microscopy, Fluorescence; Molecular Sequence Data; Nicotiana; Oligonucleotides; Oxylipins; Phylogeny; Plant Proteins; Plants, Genetically Modified; Protein Binding; Recombinant Fusion Proteins; RNA, Plant; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Sodium Chloride; Solanum lycopersicum; Trans-Activators; Two-Hybrid System Techniques | 2004 |
Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray.
From Arabidopsis full-length cDNA libraries, we collected ca. 7000 (7K) independent full-length cDNAs to prepare a cDNA microarray. The 7K cDNA collection contains 49 cytochrome P450 genes. In this study, expression patterns of these cytochrome P450 genes were analyzed by a full-length cDNA microarray under various treatments, such as hormones (salicylic acid, jasmonic acid, ethylene, abscisic acid), pathogen-inoculation ( Alternaria brassicicola , Alternaria alternata ), paraquat, rose bengal, UV stress (UV-C), heavy metal stress (CuSO4), mechanical wounding, drought, high salinity and low temperature. Expression of 29 cytochrome P450 genes among them was induced by various treatments. Inoculation with A. brassicicola and A. alternata as biotic stresses increased transcript levels of 12 and 5 genes in Arabidopsis plants, respectively. In addition, some of the genes were also expressed by abiotic stresses. This suggests crosstalk between abiotic and biotic stresses. The promoter sequences and cis -acting elements of each gene were studied on the basis of full-length cDNA sequences. Most cytochrome P450 genes induced by both abiotic and biotic stresses contained the recognition sites of MYB and MYC, ACGT-core sequence, TGA-box and W-box for WRKY transcription factors in their promoters. These cis -acting elements are known to participate in the regulation of plant defense. The response of each gene to multiple stresses is strictly regulated. Topics: Abscisic Acid; Alternaria; Arabidopsis; Blotting, Northern; Botrytis; Cluster Analysis; Cyclopentanes; Cytochrome P-450 Enzyme System; Down-Regulation; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Multigene Family; Oligonucleotide Array Sequence Analysis; Oxylipins; Paraquat; Phylogeny; Plant Diseases; Promoter Regions, Genetic; Reactive Oxygen Species; Response Elements; Rose Bengal; Salicylic Acid; Sodium Chloride; Temperature; Ultraviolet Rays | 2004 |
A hypersensitive response-induced ATPase associated with various cellular activities (AAA) protein from tobacco plants.
The hypersensitive response (HR) is one of the most critical defense systems in higher plants. In order to understand its molecular basis, we have screened tobacco genes that are transcriptionally activated during the early stage of the HR by the differential display method. Among six genes initially identified, one was found encoding a 57 kDa polypeptide with 497 amino acids not showing significant similarity to any reported proteins except for the AAA domain (ATPase associated with various cellular activities) spanning over 230 amino acids. The bacterially expressed protein exhibited ATP hydrolysis activity, and a green fluorescent protein-fusion protein localized in the cytoplasm of onion epidermis cells. The protein was subsequently designated as NtAAA1 (Nicotiana tabacum AAA1). NtAAA1 transcripts were induced 6 h after HR onset not only by TMV but also by incompatible Psuedomonas syringae, indicating that NtAAA1 is under the control of the N-gene with a common role in pathogen responses. Expression of NtAAA1 was induced by jasmonic acid and ethylene, but not by salicylic acid (SA). It also occurred at a high level in SA-deficient tobacco plants upon TMV infection. When NtAAA1 was silenced by the RNAi method, accumulation of transcripts for PR-1a significantly increased during the HR. Treatments with SA induced higher expression of PR-1a and acidic PR-2 in RNAi transgenic plants than in wild-type counterparts. These results suggest that NtAAA1 mitigates the SA signaling pathway, and therefore that NtAAA1 modulates the pathogen response of the host plants by adjusting the HR to an appropriate level. Topics: Adenosine Triphosphatases; Amino Acid Sequence; Base Sequence; Cells, Cultured; Cyclopentanes; DNA, Complementary; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Green Fluorescent Proteins; Microscopy, Fluorescence; Molecular Sequence Data; Nicotiana; Onions; Oxylipins; Phylogeny; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Pseudomonas syringae; Recombinant Fusion Proteins; RNA Interference; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Temperature; Tobacco Mosaic Virus | 2004 |
Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection.
Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins that counteract fungal polygalacturonases, which are important virulence factors. Like many other plant defense proteins, PGIPs are encoded by gene families, but the roles of individual genes in these families are poorly understood. Here, we show that in Arabidopsis, two tandemly duplicated PGIP genes are upregulated coordinately in response to Botrytis cinerea infection, but through separate signal transduction pathways. AtPGIP2 expression is mediated by jasmonate and requires COI1 and JAR1, whereas AtPGIP1 expression is upregulated strongly by oligogalacturonides but is unaffected by salicylic acid, jasmonate, or ethylene. Both AtPGIP1 and AtPGIP2 encode functional inhibitors of polygalacturonase from Botrytis, and their overexpression in Arabidopsis significantly reduces Botrytis disease symptoms. Therefore, gene duplication followed by the divergence of promoter regions may result in different modes of regulation of similar defensive proteins, thereby enhancing the likelihood of defense gene activation during pathogen infection. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Immunity, Innate; Molecular Sequence Data; Multigene Family; Oxylipins; Plant Proteins; Polygalacturonase; Salicylic Acid; Sequence Homology, Amino Acid; Signal Transduction; Tandem Repeat Sequences; Transcriptional Activation | 2003 |
ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense.
Cross-talk between ethylene and jasmonate signaling pathways determines the activation of a set of defense responses against pathogens and herbivores. However, the molecular mechanisms that underlie this cross-talk are poorly understood. Here, we show that ethylene and jasmonate pathways converge in the transcriptional activation of ETHYLENE RESPONSE FACTOR1 (ERF1), which encodes a transcription factor that regulates the expression of pathogen response genes that prevent disease progression. The expression of ERF1 can be activated rapidly by ethylene or jasmonate and can be activated synergistically by both hormones. In addition, both signaling pathways are required simultaneously to activate ERF1, because mutations that block any of them prevent ERF1 induction by any of these hormones either alone or in combination. Furthermore, 35S:ERF1 expression can rescue the defense response defects of coi1 (coronative insensitive1) and ein2 (ethylene insensitive2); therefore, it is a likely downstream component of both ethylene and jasmonate signaling pathways. Transcriptome analysis in Col;35S:ERF1 transgenic plants and ethylene/jasmonate-treated wild-type plants further supports the notion that ERF1 regulates in vivo the expression of a large number of genes responsive to both ethylene and jasmonate. These results suggest that ERF1 acts downstream of the intersection between ethylene and jasmonate pathways and suggest that this transcription factor is a key element in the integration of both signals for the regulation of defense response genes. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Nuclear Proteins; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Receptors, Cell Surface; Signal Transduction; Transcription Factors | 2003 |
Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid.
The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth. Topics: Abscisic Acid; Agrobacterium tumefaciens; Cyclopentanes; Cytokinins; Ethylenes; Immunohistochemistry; Indoleacetic Acids; Microscopy, Immunoelectron; Oxylipins; Plant Growth Regulators; Plant Roots; Plant Shoots; Plant Tumors; Ricinus; Time Factors | 2003 |
Susceptible to intolerance--a range of hormonal actions in a susceptible Arabidopsis pathogen response.
Ethylene and salicylic acid (SA) are key intermediates in a host's response to pathogens. Previously, we have shown using a tomato compatible interaction that ethylene and SA act sequentially and are essential for disease symptom production. Here, we have examined the relationship between the two signals in the Arabidopsis-Xanthomonas campestris pv. campestris (Xcc) compatible interaction. Preventing SA accumulation by expression of the nahG gene reduced subsequent ethylene production and altered the development of disease symptoms, with plants showing no visible chlorosis. The ethylene insensitive lines, etr1-1 and etr2-1, on the other hand, accumulated SA and exhibited normal but precocious symptom development. Therefore, Arabidopsis, like tomato, was found to exhibit co-operative ethylene and SA action for the production of disease symptoms. However, in Arabidopsis, SA was found to act upstream of ethylene. Jasmonic acid and indole-3-acetic acid levels were also found to increase in response to Xcc. In contrast to ethylene, accumulation of these hormones was not found to be dependent on SA action. These results indicate that the plants response to a virulent pathogen is a composite of multiple signaling pathways. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Host-Parasite Interactions; Indoleacetic Acids; Mixed Function Oxygenases; Oxylipins; Plant Diseases; Plant Proteins; Receptors, Cell Surface; Salicylic Acid; Signal Transduction; Time Factors; Xanthomonas campestris | 2003 |
Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis.
We compared the physiological and molecular responses of two Arabidopsis accessions, Col-0 and Ws-2, to ozone (O(3)) exposure. Observation of visible injury as well as ion-leakage analysis demonstrated clear differences between the O(3)-tolerant accession Col and the O(3)-sensitive accession Ws. RNA-blot analysis showed that O(3)-induced increases in mRNA levels of several ethylene-inducible genes and a salicylic acid-inducible gene were substantially higher in Ws than in Col. The time-course of induction of various mRNA levels shows that the expression of ethylene-inducible genes was rapidly, and more strongly, induced by O(3) in Ws than in Col, suggesting that Ws exhibits higher ethylene-signaling. Both the level of mRNA for an O(3)-inducible 1-aminocyclopropane-1-carboxylate synthase and the level of ethylene generation after 3 h of O(3)-exposure were higher in Ws than in Col. O(3)-induced leaf damage was attenuated by pretreatment with ethylene biosynthesis- and signaling-inhibitors, indicating that ethylene signaling is required for O(3)-induced leaf injury in Ws. On the other hand, an ethylene-overproducing mutant of Col, eto1-1, displayed significantly increased O(3)-induced leaf injury compared to wild type plants. These results indicate that the difference in O(3) sensitivity is dependent on the difference in ethylene production rate between these two accessions. Finally, we investigated the relationship between the degree of leaf damage and the level of ethylene evolution in 20 different Arabidopsis accessions. Based on the result, the accessions were classified into four types. However, most of them showed significant correlation between the ethylene production level and the degree of leaf injury, suggesting that ethylene signaling is an important factor in the natural variety of O(3) sensitivity among Arabidopsis accessions. Topics: Adaptation, Physiological; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Ozone; Polyamines; Salicylic Acid; Signal Transduction; Spermidine Synthase | 2003 |
Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory.
Jasmonic acid (JA) has long been hypothesized to be an important regulator of insect-induced volatile emission; however, current models are based primarily on circumstantial evidence derived from pharmacological studies. Using beet armyworm caterpillars (BAW: Spodoptera exigua) and intact corn seedlings, we examine this hypothesis by measuring both the time-course of insect-induced JA levels and the relationships between endogenous JA levels, ethylene, indole and sesquiterpenes. In separate Morning and Evening time-course trials, BAW feeding stimulated increases in JA levels within the first 4-6 h and resulted in maximal increases in JA, indole, sesquiterpenes and ethylene 8-16 h later. During BAW herbivory, increases in JA either paralleled or preceded the increases in indole, sesquiterpenes and ethylene in the Morning and Evening trials, respectively. By varying the intensity of the BAW herbivory, we demonstrate that strong positive relationships exist between the resulting variation in insect-induced JA levels and volatile emissions such as indole and the sesquiterpenes. To address potential signaling interactions between herbivore-induced JA and ethylene, plants were pretreated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. 1-MCP pretreatment resulted in reduced production of ethylene and volatile emission following BAW herbivory but did not alter the insect-induced accumulation of JA. Our results strongly support a role for JA in the regulation of insect-induced volatile emission but also suggest that ethylene perception regulates the magnitude of volatile emission during herbivory. Topics: Animals; Cyclopentanes; Cyclopropanes; Ethylenes; Host-Parasite Interactions; Indoles; Larva; Oxylipins; Plant Diseases; Sesquiterpenes; Signal Transduction; Spodoptera; Volatilization; Zea mays | 2003 |
Partial resistance of tomato to Phytophthora infestans is not dependent upon ethylene, jasmonic acid, or salicylic acid signaling pathways.
We compared tomato defense responses to Phytophthora infestans in highly compatible and partially compatible interactions. The highly compatible phenotype was achieved with a tomato-specialized isolate of P. infestans, whereas the partially compatible phenotype was achieved with a nonspecialized isolate. As expected, there was induction of the hypersensitive response (HR) earlier during the partially compatible interaction. However, contrary to our expectation, pathogenesis-related (PR) gene expression was not stimulated sooner in the partially compatible interaction. While the level of PR gene expression was quite similar in the two interactions, the LeDES gene (which encodes an enzyme necessary for the production of divinyl ethers) was expressed at a much higher level in the partially compatible interaction at 48 h after inoculation. Host reaction to the different pathogen genotypes was not altered (compared with wild type) in mutant tomatoes that were ethylene-insensitive (Never-ripe) or those with reduced ability to accumulate jasmonic acid (def-1). Similarly, host reaction was not altered in NahG transgenic tomatoes unable to accumulate salicylic acid. These combined data indicate that partial resistance in tomato to P. infestans is independent of ethylene, jasmonic acid, and salicylic acid signaling pathways. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Oxylipins; Phytophthora; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Solanum lycopersicum | 2003 |
Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation. Topics: Apoptosis; Arabidopsis; Bacterial Outer Membrane Proteins; Cyclopentanes; Defensins; Drug Synergism; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Nicotiana; Oxylipins; Pectobacterium carotovorum; Plant Diseases; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Polygalacturonase; Salicylic Acid; Signal Transduction; Superoxides | 2003 |
A diterpene as an endogenous signal for the activation of defense responses to infection with tobacco mosaic virus and wounding in tobacco.
In pathogen-infected or wounded tobacco plants, the activation of wound-induced protein kinase (WIPK), a tobacco mitogen-activated protein kinase, has been implicated in the defense response. However, no endogenous signal responsible for the activation has been identified. A WIPK-activating substance was isolated from tobacco leaves and identified as (11E,13E)-labda-11,13-diene-8alpha,15-diol, designated WAF-1. When applied in nanomolar concentrations to leaves, either natural WAF-1 or chemically synthesized WAF-1 activated WIPK as well as salicylic acid-induced protein kinase, a tobacco mitogen-activated protein kinase, and enhanced the accumulation of transcripts of wound- and pathogen-inducible defense-related genes. Quantitative analysis of endogenous WAF-1 revealed that levels increased rapidly in leaves during a hypersensitive response to Tobacco mosaic virus (TMV) and after wounding. Furthermore, treatment of leaves with WAF-1 resulted in enhanced resistance to TMV infection. These results suggest that WAF-1 functions as an endogenous signal to mediate the defense responses of tobacco plants to TMV infection and wounding. Topics: Cyclopentanes; Diterpenes; Ethylenes; Immunity, Innate; Mitogen-Activated Protein Kinases; Nicotiana; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Protein Kinases; Salicylic Acid; Signal Transduction; Stress, Mechanical; Tobacco Mosaic Virus | 2003 |
Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana.
The cell wall determines the shape of plant cells and is also the primary interface for pathogen interactions. The structure of the cell wall can be modified in response to developmental and environmental cues, for example to strengthen the wall and to create barriers to pathogen ingress. The ectopic lignin 1-1 and 1-2 (eli1-1 and eli1-2) mutations lead to an aberrant deposition of lignin, a complex phenylpropanoid polymer. We show that the eli1 mutants occur in the cellulose synthase gene CESA3 in Arabidopsis thaliana and cause reduced cellulose synthesis, providing further evidence for the function of multiple CESA subunits in cellulose synthesis. We show that reduced levels of cellulose synthesis, caused by mutations in cellulose synthase genes and in genes affecting cell expansion, activate lignin synthesis and defense responses through jasmonate and ethylene and other signaling pathways. These observations suggest that mechanisms monitoring cell wall integrity can activate lignification and defense responses. Topics: Arabidopsis; Arabidopsis Proteins; Benzamides; Cellulose; Cyclopentanes; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glucosyltransferases; Immunity, Innate; Lignin; Mutation; Oxylipins; Plant Diseases; Plant Roots; Signal Transduction | 2003 |
Ethylene insensitivity modulates ozone-induced cell death in birch.
We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O(3))-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O(3). Of these hormones, ET evolution correlated best with O(3)-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O(3)-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O(3) lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O(3)-exposed birch. Functional ET signaling was required for the O(3) induction of the gene encoding beta-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O(3)-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide. Topics: Adaptation, Physiological; Apoptosis; Betula; Cyclopentanes; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Kinetics; Lyases; Molecular Sequence Data; Oxylipins; Ozone; Plants, Genetically Modified; RNA, Messenger; Salicylic Acid; Signal Transduction | 2003 |
Differential effects of elevated ozone on two hybrid aspen genotypes predisposed to chronic ozone fumigation. Role of ethylene and salicylic acid.
The role of ethylene (ET) signaling in the responses of two hybrid aspen (Populus tremula L. x P. tremuloides Michx.) clones to chronic ozone (O(3); 75 nL L(-1)) was investigated. The hormonal responses differed between the clones; the O(3)-sensitive clone 51 had higher ET evolution than the tolerant clone 200 during the exposure, whereas the free salicylic acid concentration in clone 200 was higher than in clone 51. The cellular redox status, measured as glutathione redox balance, did not differ between the clones suggesting that the O(3) lesions were not a result of deficient antioxidative capacity. The buildup of salicylic acid during chronic O(3) exposure might have prevented the up-regulation of ET biosynthesis in clone 200. Blocking of ET perception with 1-methylcyclopropene protected both clones from the decrease in net photosynthesis during chronic exposure to O(3). After a pretreatment with low O(3) for 9 d, an acute 1.5-fold O(3) elevation caused necrosis in the O(3)-sensitive clone 51, which increased substantially when ET perception was blocked. The results suggest that in hybrid aspen, ET signaling had a dual role depending on the severity of the stress. ET accelerated leaf senescence under low O(3), but under acute O(3) elevation, ET signaling seemed to be required for protection from necrotic cell death. Topics: Adaptation, Physiological; Cyclopentanes; Ethylenes; Genotype; Hybrid Vigor; Oxylipins; Ozone; Photosynthesis; Populus; Salicylic Acid; Signal Transduction | 2003 |
Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant.
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Defensins; Ethylenes; Fungi; Gene Expression Regulation, Plant; Mutation; Nucleotidyltransferases; Oxylipins; Plant Diseases; Plant Proteins; Pseudomonas; Receptors, Cell Surface; Salicylic Acid; Signal Transduction | 2003 |
Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of previously identified Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis cinerea. The rate of development of B. cinerea disease symptoms on primary infected leaves was affected by responses mediated by the genes EIN2, JAR1, EDS4, PAD2, and PAD3, but was largely independent of EDS5, SID2/ICS1, and PAD4. Furthermore, plants expressing a nahG transgene or treated with a phenylalanine ammonia lyase (PAL) inhibitor showed enhanced symptoms, suggesting that SA synthesized via PAL, and not via isochorismate synthase (ICS), mediates lesion development. In addition, the degree of lesion development did not correlate with defensin or PR1 expression, although it was partially dependent upon camalexin accumulation. Although npr1 mutant leaves were normally susceptible to B. cinerea infection, a double ein2 npr1 mutant was significantly more susceptible than ein2 plants, and exogenous application of SA decreased B. cinerea lesion size through an NPR1-dependent mechanism that could be mimicked by the cpr1 mutation. These data indicate that local resistance to B. cinerea requires ethylene-, jasmonate-, and SA-mediated signaling, that the SA affecting this resistance does not require ICS1 and is likely synthesized via PAL, and that camalexin limits lesion development. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Carboxylic Ester Hydrolases; Cyclopentanes; Cytochrome P-450 Enzyme System; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Membrane Transport Proteins; Mixed Function Oxygenases; Mutation; Nucleotidyltransferases; Oxylipins; Phenylalanine Ammonia-Lyase; Plant Diseases; Plant Proteins; Receptors, Cell Surface; Salicylic Acid; Signal Transduction; Thiazoles | 2003 |
Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants.
Phytohormones regulate the protective responses of plants against both biotic and abiotic stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. A bottleneck in crosstalk research is the quantification of numerous interacting phytohormones and regulators. The chemical analysis of salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid is typically achieved by using separate and complex methodologies. Moreover, pathogen-produced phytohormone mimics, such as the phytotoxin coronatine (COR), have not been directly quantified in plant tissues. We address these problems by using a simple preparation and a GC-MS-based metabolic profiling approach. Plant tissue is extracted in aqueous 1-propanol and mixed with dichloromethane. Carboxylic acids present in the organic layer are methylated by using trimethylsilyldiazomethane; analytes are volatilized under heat, collected on a polymeric absorbent, and eluted with solvent into a sample vial. Analytes are separated by using gas chromatography and quantified by using chemical-ionization mass spectrometry that produces predominantly [M+H]+ parent ions. We use this technique to examine levels of COR, phytohormones, and volatile organic compounds in model systems, including Arabidopsis thaliana during infection with Pseudomonas syringae pv. tomato DC3000, corn (Zea mays) under herbivory by corn earworm (Helicoverpa zea), tobacco (Nicotiana tabacum) after mechanical damage, and tomato (Lycopersicon esculentum) during drought stress. Numerous complex changes induced by pathogen infection, including the accumulation of COR, salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid illustrate the potential and simplicity of this approach in quantifying signaling crosstalk interactions that occur at the level of synthesis and accumulation. Topics: Abscisic Acid; Amino Acids; Arabidopsis; Cyclopentanes; Ethylenes; Gas Chromatography-Mass Spectrometry; Indenes; Indoleacetic Acids; Oils, Volatile; Oxylipins; Plant Growth Regulators; Plants; Reproducibility of Results; Salicylic Acid; Signal Transduction; Spectrometry, Mass, Electrospray Ionization; Toxins, Biological; Volatilization | 2003 |
Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens.
A transgenic Arabidopsis line containing a chimeric PR-1::luciferase (LUC) reporter gene was subjected to mutagenesis with activation tags. Screening of lines via high-throughput LUC imaging identified a number of dominant Arabidopsis mutants that exhibited enhanced PR-1 gene expression. Here, we report the characterization of one of these mutants, designated activated disease resistance (adr) 1. This line showed constitutive expression of a number of key defense marker genes and accumulated salicylic acid but not ethylene or jasmonic acid. Furthermore, adr1 plants exhibited resistance against the biotrophic pathogens Peronospora parasitica and Erysiphe cichoracearum but not the necrotrophic fungus Botrytis cinerea. Analysis of a series of adr1 double mutants suggested that adr1-mediated resistance against P. parasitica was salicylic acid (SA)-dependent, while resistance against E. cichoracearum was both SA-dependent and partially NPR1-dependent. The ADR1 gene encoded a protein possessing a number of key features, including homology to subdomains of protein kinases, a nucleotide binding domain, and leucine-rich repeats. The controlled, transient expression of ADR1 conveyed striking disease resistance in the absence of yield penalty, highlighting the potential utility of this gene in crop protection. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Base Sequence; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Immunity, Innate; Luciferases; Mitosporic Fungi; Molecular Sequence Data; Mutation; Oxylipins; Plant Diseases; Plants, Genetically Modified; Salicylic Acid; Seeds | 2003 |
Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions.
The tomato Mi-1 gene confers resistance to three species of root-knot nematode and potato aphid. We studied changes in expression of jasmonic acid (JA)- and salicylic acid (SA)-dependent defense genes in response to potato and green peach aphids. We determined changes in three PR proteins, lipoxygenase and proteinase inhibitors I and II transcripts, locally and systemically in both compatible and incompatible interactions in tomato. Transcripts for PR-1 were detected earlier and accumulated to higher levels in the incompatible than in the compatible potato aphid/tomato interactions. The transcript profiles of the other genes were similar in compatible compared with incompatible interactions. Pin1 and Pin2 RNAs were detected early and transiently in both compatible and incompatible interactions. In tomato plants containing Mi-1, systemic expression of PR-1 and GluB was detected in both compatible and incompatible interactions at 48 h after infestations with either aphid. These results suggest that aphid feeding involves both SA and JA/ethylene plant defense signaling pathways and that Mi-1-mediated resistance might involve a SA-dependent signaling pathway. Potato aphid feeding generated reactive oxygen species in both compatible and incompatible interactions. However, a hypersensitive response was absent in the Mi-1-mediated resistance response to potato aphids. Reciprocal grafting experiments revealed that resistance is cell autonomous, and local expression of Mi-1 is required for Mi-1-mediated resistance against the potato aphid. Topics: Animals; Aphids; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Host-Parasite Interactions; Immunity, Innate; Oxylipins; Plant Diseases; Plant Proteins; Prunus; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Solanum tuberosum; Stress, Mechanical | 2003 |
Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana.
Verticillium dahliae Klebahn is a soil-borne fungal pathogen causing vascular diseases. The pathogen penetrates the host through the roots, spreads through the xylem, and systemically colonizes both resistant and susceptible genotypes. To elucidate the genetic and molecular bases of plant-Verticillium interactions, we have developed a pathosystem utilizing Arabidopsis thaliana and an isolate of V. dahliae pathogenic to both cruciferous and non-cruciferous crops. Relative tolerance (based on symptom severity) but no immunity was found in a survey of Arabidopsis ecotypes. Anthocyanin accumulation, stunting, and chlorosis were common symptoms. Specific responses of the more susceptible ecotype Columbia were induction of early flowering and dying. The more tolerant ecotype C-24 was characterized by pathogen-induced delay of transition to flowering and mild chlorosis symptoms. Genetic analysis indicated that a single dominant locus, Verticillium dahliae-tolerance (VET1), likely functioning also as a negative regulator of the transition to flowering, was able to convey increased tolerance. VET1 was mapped on chromosome IV. The differential symptom responses observed between ecotypes were not correlated with different rates of fungal tissue colonization or with differential transcript accumulation of PR-1 and PDF1.2 defense genes whose activation was not detected during the Arabidopsis-V. dahliae interaction. Impairment in salicylic acid (SA)- or jasmonic acid (JA)-dependent signaling did not cause hypersensitivity to the fungal infection, whereas ethylene insensitivity led to reduced chlorosis and ABA deficiency to reduced anthocyanin accumulation. The results of this study clearly indicated that the ability of V. dahliae to induce disease symptoms is also connected to the genetic control of development and life span in Arabidopsis. Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Defensins; Ethylenes; Flowers; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Genes, Dominant; Immunity, Innate; Oxylipins; Plant Diseases; Plant Proteins; Salicylic Acid; Signal Transduction; Verticillium | 2003 |
Hormones are in the air.
Topics: Amino Acids; Arabidopsis; Cyclopentanes; Ethylenes; Gas Chromatography-Mass Spectrometry; Indenes; Indoleacetic Acids; Oxylipins; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Spectrometry, Mass, Electrospray Ionization | 2003 |
Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize.
Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-L-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity. N availability and volicitin-induced sesquiterpene emission are inversely related as maximal responses were elicited in N-deficient plants. Plants with low N availability demonstrated similar volatile responses to volicitin (1 nmol plant(-1)) and JA (100 nmol plant(-1)). In contrast, plants with medium N availability released much lower amounts of volicitin-induced sesquiterpenes compared with JA, suggesting an alteration in volicitin-induced JA levels. As predicted, low N plants exhibited greater sustained increases in wound- and volicitin-induced JA levels compared with medium N plants. N availability also altered volicitin-E interactions. In low N plants, E synergized volicitin-induced sesquiterpene and indole emission 4- to 12-fold, with significant interactions first detected at 10 nL L(-1) E. Medium N plants demonstrated greatly reduced volicitin-E interactions. Volicitin-induced sesquiterpene emission was increased by E and was decreased by pretreatment the E perception inhibitor 1-methylcyclopropene without alteration in volicitin-induced JA levels. N availability influences plant responses to insect-derived elicitors through changes in E sensitivity and E-independent JA kinetics. Topics: alpha-Linolenic Acid; Animals; Cyclopentanes; Ethylenes; Glutamine; Immunity, Innate; Insecta; Nitrogen; Oxylipins; Plant Diseases; Sesquiterpenes; Signal Transduction; Stress, Mechanical; Volatilization; Zea mays | 2003 |
Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response.
Phytohormones regulate plant responses to a wide range of biotic and abiotic stresses. How a limited number of hormones differentially mediate individual stress responses is not understood. We have used one such response, the compatible interaction of tomato (Lycopersicon esculentum) and Xanthomonas campestris pv vesicatoria (Xcv), to examine the interactions of jasmonic acid (JA), ethylene, and salicylic acid (SA). The role of JA was assessed using an antisense allene oxide cyclase transgenic line and the def1 mutant to suppress Xcv-induced biosynthesis of jasmonates. Xcv growth was limited in these lines as was subsequent disease symptom development. No increase in JA was detected before the onset of terminal necrosis. The lack of a detectable increase in JA may indicate that an oxylipin other than JA regulates basal resistance and symptom proliferation. Alternatively, there may be an increase in sensitivity to JA or related compounds following infection. Hormone measurements showed that the oxylipin signal must precede subsequent increases in ethylene and SA accumulation. Tomato thus actively regulates the Xcv-induced disease response via the sequential action of at least three hormones, promoting expansive cell death of its own tissue. This sequential action of jasmonate, ethylene, and SA in disease symptom development is different from the hormone interactions observed in many other plant-pathogen interactions. Topics: Cyclopentanes; Drug Interactions; Ethylenes; Immunity, Innate; Oxylipins; Plant Diseases; Plant Growth Regulators; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Virulence; Xanthomonas campestris | 2003 |
Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants.
Plants under stress from both biotic and abiotic sources produce increased levels of ethylene, which is perceived by ethylene receptors and triggers cellular responses further downstream. Protein phosphorylation and dephosphorylation were implicated in the regulation of ethylene induction by stresses based on studies using protein kinase and phosphatase inhibitors. However, the kinase(s) involved remains to be determined. Using a conditional gain-of-function transgenic system, we demonstrate that the activation of SIPK, a tobacco mitogen-activated protein kinase (MAPK), by NtMEK2DD, an active mutant of the upstream kinase of SIPK, resulted in a dramatic increase in ethylene production. The increase in ethylene after the activation of SIPK coincided with a dramatic increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) activity, which was followed by the activation of a subgroup of ACS and ACC oxidase (ACO) genes, suggesting that either the activation of unidentified ACS(s) or post-transcriptional regulation is involved. Infection with Tobacco mosaic virus (TMV), which is known to activate the SIPK cascade and induce ethylene biosynthesis, also induced the same ACSs and ACOs. After ethylene production in NtMEK2DD plants, strong activation of ETHYLENE-RESPONSE FACTOR (ERF) genes was observed, similar to the effect in NN tobacco plants infected with TMV. In contrast to previous reports, no major increase in jasmonic acid (JA) and methyl jasmonate (MJ) was detected after the activation of SIPK/WIPK in NtMEK2DD transgenic plants. These results suggest that the induction of ethylene but not JA/MJ is involved in plant defense responses mediated by the NtMEK2-SIPK/WIPK pathway. Topics: Acetates; Amino Acid Oxidoreductases; Cyclopentanes; Dexamethasone; Enzyme Activation; Ethylenes; Lyases; Mitogen-Activated Protein Kinases; Nicotiana; Oxylipins; Plant Proteins; Plants, Genetically Modified; Stress, Mechanical; Tobacco Mosaic Virus | 2003 |
Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0.
Root inoculation of Arabidopsis thaliana ecotype Columbia with Pseudomonas fluorescens CHA0r partially protected leaves from the oomycete Peronospora parasitica. The molecular determinants of Pseudomonas fluorescens CHA0r for this induced systemic resistance (ISR) were investigated, using mutants derived from strain CHA0: CHA400 (pyoverdine deficient), CHA805 (exoprotease deficient), CHA77 (HCN deficient), CHA660 (pyoluteorin deficient), CHA631 (2,4-diacetylphloroglucinol [DAPG] deficient), and CHA89 (HCN, DAPG- and pyoluteorin deficient). Only mutations interfering with DAPG production led to a significant decrease in ISR to Peronospora parasitica. Thus, DAPG production in Pseudomonas fluorescens is required for the induction of ISR to Peronospora parasitica. DAPG is known for its antibiotic activity; however, our data indicate that one action of DAPG could be due to an effect on the physiology of the plant. DAPG at 10 to 100 microM applied to roots of Arabidopsis mimicked the ISR effect. CHA0r-mediated ISR was also tested in various Arabidopsis mutants and transgenic plants: NahG (transgenic line degrading salicylic acid [SA]), sid2-1 (nonproducing SA), npr1-1 (non-expressing NPR1 protein), jar1-1 (insensitive to jasmonic acid and methyl jasmonic acid), ein2-1 (insensitive to ethylene), etr1-1 (insensitive to ethylene), eir1-1 (insensitive to ethylene in roots), and pad2-1 (phytoalexin deficient). Only jar1-1, eir1-1, and npr1-1 mutants were unable to undergo ISR. Sensitivity to jasmonic acid and functional NPR1 and EIR1 proteins were required for full expression of CHA0r-mediated ISR. The requirements for ISR observed in this study in Peronospora parasitica induced by Pseudomonas fluorescens CHA0r only partially overlap with those published so far for Peronospora parasitica, indicating a great degree of flexibility in the molecular processes leading to ISR. Topics: Anti-Bacterial Agents; Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Mutation; Oxylipins; Peronospora; Phloroglucinol; Plant Diseases; Plant Growth Regulators; Plant Roots; Plants, Genetically Modified; Pseudomonas fluorescens; Salicylic Acid | 2003 |
Plastidial fatty acid signaling modulates salicylic acid- and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant.
A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl-acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)-responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES-derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum-localized omega6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane-localized omega6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit microscopic cell death and express the PR-1 gene constitutively. In addition, these plants are unable to induce the expression of PDF1.2 in response to the exogenous application of JA. Because the act1 mutation rescues all of these phenotypes in ssi2 fad6 act1 triple-mutant plants, act1-mediated reversion may be mediated largely by an increase in the free 18:1 content within the chloroplasts. The reversion of JA responsiveness in ssi2 act1 plants is abolished in the ssi2 act1 coi1 triple-mutant backgr Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Chloroplasts; Cyclopentanes; Defensins; Endoplasmic Reticulum; Ethylenes; Fatty Acid Desaturases; Fatty Acids; Glycerol-3-Phosphate O-Acyltransferase; Immunity, Innate; Mixed Function Oxygenases; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Proteins; Protein Conformation; Salicylic Acid; Signal Transduction; Stress, Mechanical; Up-Regulation | 2003 |
Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression.
To analyze cellular responses to ozone (O3), we performed a large-scale analysis of the Arabidopsis transcriptome after plants were exposed to O3 for 12 h. By using cDNA macroarray technology, we identified 205 non-redundant expressed sequence tags (ESTs) that were regulated by O3. Of these, 157 were induced and 48 were suppressed by O3. A substantial proportion of these ESTs had predicted functions in cell rescue/defense processes. Using these isolated ESTs, we also undertook a comprehensive investigation of how three hormones, ethylene (ET), jasmonic acid (JA), and salicylic acid (SA), interact to regulate O3-induced genes in various genetic backgrounds of Arabidopsis, such as the ET-insensitive ein2-1, JA-resistant jar1-1, and SA-insensitive npr1-1. The expression of half of the 157 induced genes, especially cell rescue/defense genes, was controlled by ET and JA signaling, indicating that O3-induced defense gene expression at this stage was mainly regulated by ET and JA. Clustering analysis of the 157 O3-induced gene expressions revealed that multiple signal pathways act mutually antagonistically to induce the expression of these genes, and many cell rescue/defense genes induced by ET and JA signal pathways were suppressed by SA signaling, suggesting that the SA pathway acts as a strong antagonist to gene expression induced by ET and JA signaling. Topics: Arabidopsis; Cluster Analysis; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Mutation; Oligonucleotide Array Sequence Analysis; Oxylipins; Ozone; Salicylic Acid; Transcription, Genetic | 2003 |
The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance. Topics: Botrytis; Cyclopentanes; Cyclopropanes; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Norbornanes; Oxylipins; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Protease Inhibitors; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Stress, Mechanical | 2002 |
The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses.
Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants. Topics: Arabidopsis; Arabidopsis Proteins; Cell Wall; Cellulose; Cloning, Molecular; Cyclopentanes; Darkness; Ethylenes; Gene Expression Regulation, Plant; Genetic Complementation Test; Glucosyltransferases; Hypocotyl; Light; Mutation; Oxylipins; Phenotype; Plant Leaves; Plant Proteins; Plant Roots; Plant Stems; Receptors, Cell Surface; Restriction Mapping; Signal Transduction; Stress, Mechanical | 2002 |
Arabidopsis research heats up in Seville.
Topics: Adaptation, Physiological; Arabidopsis; Brassinosteroids; Cell Wall; Cellulose; Cholestanols; Chromosome Mapping; Circadian Rhythm; Cyclopentanes; Cytokinins; Cytoskeleton; Ethylenes; Gene Silencing; Genomics; Oxylipins; Plant Diseases; Plant Growth Regulators; Proteome; Quantitative Trait Loci; Research Design; Signal Transduction; Sodium Chloride; Spain; Steroids, Heterocyclic | 2002 |
Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis.
Salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are each involved in the regulation of basal resistance against different pathogens. These three signals play important roles in induced resistance as well. SA is a key regulator of pathogen-induced systemic acquired resistance (SAR), whereas JA and ET are required for rhizobacteria-mediated induced systemic resistance (ISR). Both types of induced resistance are effective against a broad spectrum of pathogens. In this study, we compared the spectrum of effectiveness of SAR and ISR using an oomycete, a fungal, a bacterial, and a viral pathogen. In noninduced Arabidopsis plants, these pathogens are primarily resisted through either SA-dependent basal resistance (Peronospora parasitica and Turnip crinkle virus [TCV]), JA/ET-dependent basal resistance responses (Alternaria brassicicola), or a combination of SA-, JA-, and ET-dependent defenses (Xanthomonas campestris pv. armoraciae). Activation of ISR resulted in a significant level of protection against A. brassicicola, whereas SAR was ineffective against this pathogen. Conversely, activation of SAR resulted in a high level of protection against P. parasitica and TCV, whereas ISR conferred only weak and no protection against P. parasitica and TCV, respectively. Induction of SAR and ISR was equally effective against X. campestris pv. armoraciae. These results indicate that SAR is effective against pathogens that in noninduced plants are resisted through SA-dependent defenses, whereas ISR is effective against pathogens that in noninduced plants are resisted through JA/ET-dependent defenses. This suggests that SAR and ISR constitute a reinforcement of extant SA- or JA/ET-dependent basal defense responses, respectively. Topics: Alternaria; Arabidopsis; Carmovirus; Cyclopentanes; Ethylenes; Immunity, Innate; Molecular Sequence Data; Oomycetes; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylates | 2002 |
Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds.
An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.2 upon inoculation with pathogens. Two reactive oxygen generating compounds, paraquat and acifluorfen, were found to cause induction of both phytoalexin accumulation and PDF1.2 expression in wild-type plants, but this induction was almost completely abolished in esa1. This finding suggests that esa1 may somehow be involved in transduction of signals generated by reactive oxygen species. Topics: Alternaria; Arabidopsis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Mutation; Nitrobenzoates; Oxylipins; Paraquat; Phytoalexins; Plant Diseases; Plant Extracts; Plant Proteins; Reactive Oxygen Species; Salicylates; Sesquiterpenes; Terpenes; Thiazoles | 2002 |
Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves.
With a specific focus on rice self-defense response(s), the effects of global signaling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and ethylene (using the ethylene generator, ethephon), and protein phosphatase (PP) inhibitors, cantharidin and endothall on expression of a rice phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in rice seedling leaves were investigated. We provide first evidence for a potent up-regulation of the OsPHGPX mRNA accumulation by these signaling molecules and PP inhibitors that strongly suggest its potential role in defense/stress. The OsPHGPX gene also showed a weak constitutive expression and responsiveness to cut. These inductions were influenced by light signal(s), and did not show a requirement for de novo synthesized protein factor(s). A potential interaction amongst these signaling molecules, especially JA, SA, ABA and kinetin, in modulating the OsPHGPX expression was found. The blast pathogen, Magnaporthe grisea also elicited the accumulation of OsPHGPX mRNA in leaves. This is a first systematic report in rice (and in plants) demonstrating the inducible nature (and expression) of the OsPHGPX gene by a variety of defense/stress-related stimuli, and modulation by the PPs of the kinase-signaling cascade(s). Topics: Abscisic Acid; Blotting, Northern; Cantharidin; Cyclopentanes; Dicarboxylic Acids; Dose-Response Relationship, Drug; Enzyme Inhibitors; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glutathione Peroxidase; Light; Magnaporthe; Organophosphorus Compounds; Oryza; Oxylipins; Phospholipid Hydroperoxide Glutathione Peroxidase; Phosphoprotein Phosphatases; Plant Growth Regulators; Plant Leaves; Plants; RNA, Messenger; Salicylic Acid; Staurosporine; Up-Regulation | 2002 |
Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses.
Numerous studies have shown that transcription factors are important in regulating plant responses to environmental stress. However, specific functions for most of the genes encoding transcription factors are unclear. In this study, we used mRNA profiles generated from microarray experiments to deduce the functions of genes encoding known and putative Arabidopsis transcription factors. The mRNA levels of 402 distinct transcription factor genes were examined at different developmental stages and under various stress conditions. Transcription factors potentially controlling downstream gene expression in stress signal transduction pathways were identified by observed activation and repression of the genes after certain stress treatments. The mRNA levels of a number of previously characterized transcription factor genes were changed significantly in connection with other regulatory pathways, suggesting their multifunctional nature. The expression of 74 transcription factor genes responsive to bacterial pathogen infection was reduced or abolished in mutants that have defects in salicylic acid, jasmonic acid, or ethylene signaling. This observation indicates that the regulation of these genes is mediated at least partly by these plant hormones and suggests that the transcription factor genes are involved in the regulation of additional downstream responses mediated by these hormones. Among the 43 transcription factor genes that are induced during senescence, 28 of them also are induced by stress treatment, suggesting extensive overlap responses to these stresses. Statistical analysis of the promoter regions of the genes responsive to cold stress indicated unambiguous enrichment of known conserved transcription factor binding sites for the responses. A highly conserved novel promoter motif was identified in genes responding to a broad set of pathogen infection treatments. This observation strongly suggests that the corresponding transcription factors play general and crucial roles in the coordinated regulation of these specific regulons. Although further validation is needed, these correlative results provide a vast amount of information that can guide hypothesis-driven research to elucidate the molecular mechanisms involved in transcriptional regulation and signaling networks in plants. Topics: Arabidopsis; Bacteria; Cold Temperature; Conserved Sequence; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Multigene Family; Oligonucleotide Array Sequence Analysis; Oxylipins; Phylogeny; Plant Roots; Plants, Genetically Modified; RNA, Plant; Salicylic Acid; Signal Transduction; Transcription Factors | 2002 |
Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis.
The Pti4, Pti5, and Pti6 proteins from tomato were identified based on their interaction with the product of the Pto disease resistance gene, a Ser-Thr protein kinase. They belong to the ethylene-response factor (ERF) family of plant-unique transcription factors and bind specifically to the GCC-box cis element present in the promoters of many pathogenesis-related (PR) genes. Here, we show that these tomato ERFs are localized to the nucleus and function in vivo as transcription activators that regulate the expression of GCC box-containing PR genes. Expression of Pti4, Pti5, or Pti6 in Arabidopsis activated the expression of the salicylic acid-regulated genes PR1 and PR2. Expression of jasmonic acid- and ethylene-regulated genes, such as PR3, PR4, PDF1.2, and Thi2.1, was affected differently by each of the three tomato ERFs, with Arabidopsis-Pti4 plants having very high levels of PDF1.2 transcripts. Exogenous application of salicylic acid to Arabidopsis-Pti4 plants suppressed the increased expression of PDF1.2 but further stimulated PR1 expression. Arabidopsis plants expressing Pti4 displayed increased resistance to the fungal pathogen Erysiphe orontii and increased tolerance to the bacterial pathogen Pseudomonas syringae pv tomato. These results indicate that Pti4, Pti5, and Pti6 activate the expression of a wide array of PR genes and play important and distinct roles in plant defense. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Cell Nucleus; Cyclopentanes; Defensins; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Nuclear Proteins; Oxylipins; Plant Diseases; Plant Proteins; Protein Serine-Threonine Kinases; Pseudomonas; Receptors, Cell Surface; Salicylic Acid; Solanum lycopersicum; Transcription Factors; Transcriptional Activation | 2002 |
The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways. Topics: Apoptosis; Arabidopsis; Arabidopsis Proteins; Bacteria; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Glucans; Hydrogen Peroxide; Immunity, Innate; Mixed Function Oxygenases; Mutation; Oomycetes; Oxygen; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Proteins; Reactive Oxygen Species; Salicylic Acid; Signal Transduction | 2002 |
Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging.
In order to identify components of the defense signaling network engaged following attempted pathogen invasion, we generated a novel PR-1::luciferase (LUC) transgenic line that was deployed in an imaging-based screen to uncover defense-related mutants. The recessive mutant designated cir1 exhibited constitutive expression of salicylic acid (SA), jasmonic acid (JA)/ethylene, and reactive oxygen intermediate-dependent genes. Moreover, this mutation conferred resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and a virulent oomycete pathogen Peronospora parasitica Noco2. Epistasis analyses were undertaken between cir1 and mutants that disrupt the SA (nprl, nahG), JA (jar1), and ethylene (ET) (ein2) signaling pathways. While resistance against both P. syringae pv. tomato DC3000 and Peronospora parasitica Noco2 was partially reduced by npr1, resistance against both of these pathogens was lost in an nahG genetic background. Hence, cirl-mediated resistance is established via NPR1-dependent and -independent signaling pathways and SA accumulation is essential for the function of both pathways. While jar1 and ein2 reduced resistance against P. syringae pv. tomato DC3000, these mutations appeared not to impact cir1-mediated resistance against Peronospora parasitica Noco2. Thus, JA and ET sensitivity are required for cir1-mediated resistance against P. syringae pv. tomato DC3000 but not Peronospora parasitica Noco2. Therefore, the cir1 mutation may define a negative regulator of disease resistance that operates upstream of SA, JA, and ET accumulation. Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Epistasis, Genetic; Ethylenes; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Immunity, Innate; Luciferases; Mixed Function Oxygenases; Mutation; Nucleotidyltransferases; Oomycetes; Oxylipins; Plant Diseases; Plant Proteins; Plants, Genetically Modified; Pseudomonas; Reactive Oxygen Species; Receptors, Cell Surface; Salicylic Acid; Virulence | 2002 |
Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance.
In Arabidopsis, the rhizobacterial strain Pseudomonas fluorescens WCS417r triggers jasmonate (JA)- and ethylene (ET)-dependent induced systemic resistance (ISR) that is effective against different pathogens. Arabidopsis genotypes unable to express rhizobacteria-mediated ISR against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) exhibit enhanced disease susceptibility towards this pathogen. To identify novel components controlling induced resistance, we tested 11 Arabidopsis mutants with enhanced disease susceptibility (eds) to pathogenic P. syringae bacteria for WCS417r-mediated ISR and pathogen-induced systemic acquired resistance (SAR). Mutants eds4-1, eds8-1 and eds10-1 failed to develop WCS417r-mediated ISR, while mutants eds5-1 and eds12-1 failed to express pathogen-induced SAR. Whereas eds5-1 is known to be blocked in salicylic acid (SA) biosynthesis, analysis of eds12-1 revealed that its impaired SAR response is caused by reduced sensitivity to this molecule. Analysis of the ISR-impaired eds mutants revealed that they are non-responsive to induction of resistance by methyl jasmonate (MeJA) (eds4-1, eds8-1 and eds10-1), or the ET precursor 1-aminocyclopropane-1-carboxylate (ACC) (eds4-1 and eds10-1). Moreover, eds4-1 and eds8-1 showed reduced expression of the plant defensin gene PDF1.2 after MeJA and ACC treatment, which was associated with reduced sensitivity to either ET (eds4-1) or MeJA (eds8-1). Although blocked in WCS417r-, MeJA- and ACC-induced ISR, eds10-1 behaved normally for several other responses to MeJA or ACC. The results indicate that EDS12 is required for SAR and acts downstream of SA, whereas EDS4, EDS8 and EDS10 are required for ISR acting either in JA signalling (EDS8), ET signalling (EDS4), or downstream JA and ET signalling (EDS10) in the ISR pathway. Topics: Acetates; Amino Acids, Cyclic; Anthocyanins; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Structures; Pseudomonas; Salicylic Acid; Signal Transduction | 2002 |
Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi.
Infection of a plant by a pathogen induces a variety of defense responses that imply the action of several signaling molecules, including salicylic acid (SA), jasmonic acid (JA) and ethylene (E). Here we describe the role of ETHYLENE-RESPONSE-FACTOR1 (ERF1) as a regulator of ethylene responses after pathogen attack in Arabidopsis. The ERF1 transcript is induced on infection by Botrytis cinerea, and overexpression of ERF1 in Arabidopsis is sufficient to confer resistance to necrotrophic fungi such as B. cinerea and Plectosphaerella cucumerina. A positive co-operation between E and SA pathways was observed in the plant response to P. cucumerina. Infection by Pseudomonas syringae tomato DC3000, however, does not affect ERF1 expression, and activation of ethylene responses by ERF1 overexpression in Arabidopsis plants reduces tolerance against this pathogen, suggesting negative crosstalk between E and SA signaling pathways, and demonstrating that positive and negative interactions between both pathways can be established depending on the type of pathogen. Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Mitosporic Fungi; Nuclear Proteins; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Pseudomonas; Salicylic Acid; Signal Transduction; Transcription Factors | 2002 |
Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants.
Herbivore attacks induce leaves to emit a specific blend of volatiles. Here we show that exposure to Tetranychus urticae-induced volatiles, as well as T. urticae infestation and artificial wounding, activates the transcription of the genes involved in the biosynthesis of ethylene [S-adenosylmethionine (SAM) synthetase and 1-aminocyclopropane-1-carboxylic acid oxidase] and a gene involved in the biosynthesis of polyamines from SAM (SAM decarboxylase) in lima bean leaves. Moreover, exposure of leaves to any one of the seven major chemical components of T. urticae-induced volatiles also induces expression of these genes. Furthermore, we found that, when lima bean plants were exposed to T. urticae-induced volatiles, they emitted ethylene. Lima bean plants infested by T. urticae and artificially wounded plants also emitted ethylene. Endogenous polyamine levels were not increased in the exposed leaves or the infested leaves, suggesting that polyamine production from SAM was only slightly promoted at the metabolic levels present in the leaves. We found that jasmonate (JA) accumulated in leaves exposed to T. urticae-induced volatiles, and that both JA and salicylate (SA) accumulated in leaves infested by T. urticae. These findings, as well as results of pharmacological analyses, suggest that, in leaves exposed to T. urticae-induced volatiles, ethylene biosynthesis might be regulated by pathways involving JA and the ethylene positive feedback loop. They also suggest that ethylene biosynthesis might be regulated by signaling pathways involving JA, SA and ethylene in T. urticae-infested leaves. Topics: Adenosylmethionine Decarboxylase; Amino Acid Oxidoreductases; Amino Acid Sequence; Animals; Cyclopentanes; DNA, Complementary; Enzymes; Ethylenes; Fabaceae; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Methionine Adenosyltransferase; Mites; Molecular Sequence Data; Organophosphorus Compounds; Oxylipins; Plant Leaves; Polyamines; Salicylic Acid; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Signal Transduction; Stress, Mechanical | 2002 |
Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis.
Mechanical wounding not only damages plant tissues, but also provides pathways for pathogen invasion. To understand plant responses to wounding at a genomic level, we have surveyed the transcriptional response of 8,200 genes in Arabidopsis plants. Approximately 8% of these genes were altered by wounding at steady-state mRNA levels. Studies of expression patterns of these genes provide new information on the interactions between wounding and other signals, including pathogen attack, abiotic stress factors, and plant hormones. For example, a number of wound-responsive genes encode proteins involved in pathogen response. These include signaling molecules for the pathogen resistance pathway and enzymes required for cell wall modification and secondary metabolism. Many osmotic stress- and heat shock-regulated genes were highly responsive to wounding. Although a number of genes involved in ethylene, jasmonic acid, and abscisic acid pathways were activated, many in auxin responses were suppressed by wounding. These results further dissected the nature of mechanical wounding as a stress signal and identified new genes that may play a role in wounding and other signal transduction pathways. Topics: Abscisic Acid; Arabidopsis; Cell Wall; Cyclopentanes; Ethylenes; Gene Expression Profiling; Gene Expression Regulation; Gene Expression Regulation, Plant; Heat-Shock Proteins; Immunity, Innate; Indoleacetic Acids; Oligonucleotide Array Sequence Analysis; Osmotic Pressure; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Reactive Oxygen Species; RNA, Messenger; Signal Transduction; Stress, Mechanical | 2002 |
Negative regulation of defense responses in plants by a conserved MAPKK kinase.
The enhanced disease resistance 1 (edr1) mutation of Arabidopsis confers resistance to powdery mildew disease caused by the fungus Erysiphe cichoracearum. Resistance mediated by the edr1 mutation is correlated with induction of several defense responses, including host cell death. Double mutant analysis revealed that all edr1-associated phenotypes are suppressed by mutations that block salicylic acid (SA) perception (nim1) or reduce SA production (pad4 and eds1). The NahG transgene, which lowers endogenous SA levels, also suppressed edr1. In contrast, the ein2 mutation did not suppress edr1-mediated resistance and associated phenotypes, indicating that ethylene and jasmonic acid-induced responses are not required for edr1 resistance. The EDR1 gene was isolated by positional cloning and was found to encode a putative MAP kinase kinase kinase similar to CTR1, a negative regulator of ethylene responses in Arabidopsis. Taken together, these data suggest that EDR1 functions at the top of a MAP kinase cascade that negatively regulates SA-inducible defense responses. Putative orthologs of EDR1 are present in monocots such as rice and barley, indicating that EDR1 may regulate defense responses in a wide range of crop species. Topics: Amino Acid Sequence; Antifungal Agents; Arabidopsis; Arabidopsis Proteins; Cloning, Molecular; Conserved Sequence; Crops, Agricultural; Cyclopentanes; Ethylenes; Fungi; Genes, Plant; Genetic Complementation Test; Immunity, Innate; MAP Kinase Kinase Kinases; MAP Kinase Signaling System; Molecular Sequence Data; Mutation; Oxylipins; Phenotype; Phylogeny; Plant Diseases; Plant Proteins; Salicylic Acid; Sequence Alignment | 2001 |
Characterization of a rice (Oryza sativa L.) Bowman-Birk proteinase inhibitor: tightly light regulated induction in response to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitors.
The Bowman-Birk (BB) family of proteinase inhibitors (PI), initially reported from legume seeds, and thereafter also from wounded alfalfa and maize leaves appear to be regulated in similar ways as the extensively characterized PI I and PI II family from dicots. Here, we report a first characterization of the expression profiles of a rice (Oryza sativa L. cv. Nipponbare) BBPI gene, OsBBPI, which is part of a multigene family as demonstrated by genomic Southern hybridization. OsBBPI was found to be rapidly induced in rice seedling leaf in response to cut, exogenous jasmonic acid (JA), and two potent protein phosphatase 2A (PP2A) inhibitors, cantharidin (CN) and endothall (EN), in a light/dark-, time- and dose-dependent manner; this induction was completely inhibited by cycloheximide (CHX), indicating a requirement for de novo protein synthesis in its induction. Surprisingly, dark strongly up regulated cut-, JA-, CN-, and EN-induced OsBBPI expression, with the strongest enhancement observed with JA. A simultaneous application of a serine/threonine protein kinase inhibitor staurosporine (ST) did not affect significantly the JA-, CN-, and EN-induced OsBBPI transcript. Besides JA, it was found that the ethylene generator ethephon (ET) also had an enhancing effect on OsBBPI transcript, suggesting a direct effect of ethylene on OsBBPI expression. However, a simultaneous application of salicylic acid (SA) and abscisic acid (ABA), with JA, respectively, completely blocked OsBBPI gene expression, whereas kinetin (KN) was only partially effective. To the best of our knowledge, complete inhibition of JA-induced OsBBPI expression by SA is the first report in monocots, and with ABA in plants. Taken together, these results suggest that among the phytohormones tested here, JA and ethylene play important role(s) in regulating OsBBPI expression, with an intimate interaction with light signals. Finally, that the induced OsBBPI expression follows a kinase-signaling cascade is implied by the use of PP2A inhibitors. Topics: Abscisic Acid; Amino Acid Sequence; Blotting, Southern; Cantharidin; Cyclopentanes; Darkness; Dicarboxylic Acids; DNA, Plant; Enzyme Inhibitors; Ethylenes; Gene Expression Regulation, Plant; Light; Models, Biological; Molecular Sequence Data; Organophosphorus Compounds; Oryza; Oxylipins; Phosphoprotein Phosphatases; Plant Leaves; Plant Proteins; Protein Phosphatase 2; RNA, Messenger; Salicylic Acid; Sequence Alignment; Sequence Homology, Amino Acid; Staurosporine; Stress, Mechanical; Trypsin Inhibitor, Bowman-Birk Soybean | 2001 |
Smart plants or stealthy bugs?
Topics: Adaptation, Physiological; Animals; Cyclopentanes; Ethylenes; Manduca; Nicotiana; Nicotine; Oxylipins; Plant Growth Regulators; Plants, Toxic | 2001 |
Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-Induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransfer
Attack by the specialist herbivore, Manduca sexta, on its native host Nicotiana attenuata Torr. ex Wats. produces a dramatic ethylene release, a jasmonate burst, and a suppression of the nicotine accumulation that results from careful simulations of the herbivore's damage. Methyl-jasmonate (MeJA) treatment induces nicotine biosynthesis. However, this induction can be suppressed by ethylene as pretreatment of plants with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene receptors, restores the full MeJA-induced nicotine response in herbivore attacked plants (J. Kahl, D.H. Siemens, R.J. Aerts, R. Gäbler, F. Kühnemann, C.A. Preston, I.T. Baldwin [2000] Planta 210: 336-342). To understand whether this herbivore-induced signal cross-talk occurs at the level of transcript accumulation, we cloned the putrescine methyltransferase genes (NaPMT1 and NaPMT2) of N. attenuata, which are thought to represent the rate limiting step in nicotine biosynthesis, and measured transcript accumulations by northern analysis after various jasmonate, 1-MCP, ethephon, and herbivory treatments. Transcripts of both root putrescine N-methyltransferase (PMT) genes and nicotine accumulation increased dramatically within 10 h of shoot MeJA treatment and immediately after root treatments. Root ethephon treatments suppressed this response, which could be reversed by 1-MCP pretreatment. Moreover, 1-MCP pretreatment dramatically amplified the transcript accumulation resulting from both wounding and M. sexta herbivory. We conclude that attack from this nicotine-tolerant specialist insect causes N. attenuata to produce ethylene, which directly suppresses the nitrogen-intensive biosynthesis of nicotine. Topics: Amino Acid Sequence; Animals; Base Sequence; Cloning, Molecular; Cyclopentanes; Ethylenes; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Isoenzymes; Manduca; Methyltransferases; Molecular Sequence Data; Nicotiana; Nicotine; Oxylipins; Plant Growth Regulators; Plants, Toxic; Sequence Alignment; Sequence Homology, Amino Acid; Sequence Homology, Nucleic Acid; Transcription, Genetic | 2001 |
The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens.
Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway. Topics: Arabidopsis; Arabidopsis Proteins; Ascomycota; Chitinases; Cyclopentanes; Defensins; Ethylenes; Genes, Plant; Luciferases; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plant Roots; Promoter Regions, Genetic; Receptors, Cell Surface; Recombinant Fusion Proteins; Signal Transduction; Transgenes | 2001 |
Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis.
To investigate the signaling pathways through which defense responses are activated following pathogen infection, we have isolated and characterized the cpr22 mutant. This plant carries a semidominant, conditional lethal mutation that confers constitutive expression of the pathogenesis-related (PR) genes PR-1, PR-2, PR-5 and the defensin gene PDF1.2. cpr22 plants also display spontaneous lesion formation, elevated levels of salicylic acid (SA) and heightened resistance to Peronospora parasitica Emco5. The cpr22 locus was mapped to chromosome 2, approximately 2 cM telomeric to the AthB102 marker. By analyzing the progeny of crosses between cpr22 plants and either NahG transgenic plants or npr1 mutants, all of the cpr22-associated phenotypes except PDF1.2 expression were found to be SA dependent. However, the SA signal transducer NPR1 was required only for constitutive PR-1 expression. A cross between cpr22 and ndr1-1 mutants revealed that enhanced resistance to P. parasitica is mediated by an NDR1-dependent pathway, while the other cpr22-induced defenses are not. Crosses between either coi1-1 or etr1-1 mutants further demonstrated that constitutive PDF1.2 expression is mediated by a JA- and ethylene-dependent pathway. Based on these results, the cpr22 mutation appears to induce its associated phenotypes by activating NPR1-dependent and NPR1-independent branches of the SA pathway, as well as an ethylene/JA signaling pathway. Interestingly, the SA-dependent phenotypes, but not the SA-independent phenotypes, are suppressed when cpr22 mutants are grown under high humidity. Topics: Arabidopsis; Arabidopsis Proteins; Chromosome Segregation; Cyclopentanes; Defensins; Ethylenes; Fatty Acids, Unsaturated; Genes, Plant; Humidity; Mixed Function Oxygenases; Models, Biological; Mutation; Oomycetes; Oxylipins; Phenotype; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; Salicylic Acid; Signal Transduction; Thiadiazoles; Transcription Factors | 2001 |
Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.
Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Indoles; Mutation; Oxylipins; Phytophthora; Salicylic Acid; Signal Transduction; Thiazoles | 2001 |
Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences.
The rice blast resistance gene Pib is a member of the nucleotide binding site (NBS) and leucine-rich repeat (LRR) class of plant disease resistance (R) genes and belongs to a small gene family. We describe here the isolation and characterization of a Pib homologue (PibH8), and extensive investigation of the expression of the Pib gene family (Pib, PibH8, HPibH8-1, HPibH8-2) under various environmental and chemical treatments. PibH8 shows 42% identity and 60% similarity to Pib and, like Pib, has a duplication of the kinase 1a, 2, and 3a motifs of the NBS region in the N-terminal half of the protein. Interestingly, genes of the Pib family exhibit a diurnal rhythm of expression. RNA gel blot analysis revealed that their expression was regulated dramatically by environmental signals. such as temperature, light and water availability. Their expression was also induced by chemical treatments, such as jasmonic acid, salicylic acid, ethylene and probenazole. Our findings suggest that expression of the Pib gene family is up-regulated by environmental conditions that would favour pathogen infection. This may reflect the evolution of anticipatory control of R gene expression. Topics: Abscisic Acid; Amino Acid Sequence; Blotting, Northern; Carrier Proteins; Cyclopentanes; DNA, Complementary; Ethylenes; Gene Expression Regulation, Plant; Magnaporthe; Molecular Sequence Data; Oryza; Oxylipins; Phosphate-Binding Proteins; Plant Diseases; Plant Proteins; Protein Isoforms; RNA, Messenger; Salicylic Acid; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Sodium Chloride; Temperature; Thiazoles; Up-Regulation | 2001 |
Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore.
Herbivory induces both direct and indirect defenses in plants; however, some combinations of these defenses may not be compatible. The jasmonate signal cascade activated both direct (nicotine accumulations) and indirect (mono- and sesquiterpene emissions) whole-plant defense responses in the native tobacco Nicotiana attenuata Torr. Ex Wats. Nicotine accumulations were proportional to the amount of leaf wounding and the resulting increases in jasmonic acid (JA) concentrations. However, when larvae of the nicotine-tolerant herbivore, Manduca sexta, fed on plants or their oral secretions were applied to leaf punctures, the normal wound response was dramatically altered, as evidenced by large (4- to 10-fold) increases in the release of (i) volatile terpenoids and (ii) ethylene, (iii) increased (4- to 30-fold) accumulations of endogenous JA pools, but (iv) decreased or unchanged nicotine accumulations. The ethylene release, which was insensitive to inhibitors of induced JA accumulation, was sufficient to account for the attenuated nicotine response. Applications of ethylene and ethephon suppressed the induced nicotine response and pre-treatment of plants with a competitive inhibitor of ethylene receptors, 1-methylcyclopropene, restored the full nicotine response. This ethylene burst, however, did not inhibit the release of volatile terpenoids. Because parasitoids of Manduca larvae are sensitive to the dietary intake of nicotine by their hosts, this ethylene-mediated switching from direct to a putative indirect defense may represent an adaptive tailoring of a plant's defense response. Topics: Acetates; Analysis of Variance; Animals; Cyclopentanes; Cyclopropanes; Ethylenes; Indoleacetic Acids; Manduca; Nicotiana; Nicotine; Organophosphorus Compounds; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Roots; Plants, Toxic; Salicylic Acid | 2000 |
Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid.
In tobacco, two mitogen-activated protein (MAP) kinases, designated salicylic acid (SA)-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK) are activated in a disease resistance-specific manner following pathogen infection or elicitor treatment. To investigate whether nitric oxide (NO), SA, ethylene, or jasmonic acid (JA) are involved in this phenomenon, the ability of these defense signals to activate these kinases was assessed. Both NO and SA activated SIPK; however, they did not activate WIPK. Additional analyses with transgenic NahG tobacco revealed that SA is required for the NO-mediated induction of SIPK. Neither JA nor ethylene activated SIPK or WIPK. Thus, SIPK may function downstream of SA in the NO signaling pathway for defense responses, while the signals responsible for resistance-associated WIPK activation have yet to be determined. Topics: Cyclopentanes; Enzyme Induction; Ethylenes; Mitogen-Activated Protein Kinases; Nicotiana; Nitric Oxide; Oxylipins; Plant Proteins; Plants, Toxic; RNA, Messenger; Salicylic Acid; Signal Transduction | 2000 |
Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora.
We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone. Topics: Anti-Bacterial Agents; Arabidopsis; Blotting, Northern; Cell Wall; Culture Media; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Pectobacterium carotovorum; Plant Growth Regulators; Polymerase Chain Reaction; Salicylic Acid; Signal Transduction | 2000 |
Methionine-induced phytoalexin production in rice leaves.
The application of methionine on wounded rice leaves induced the production of rice phytoalexins, sakuranetin and momilactone A. This induction resulted from stimulation of phenylalanine ammonia-lyase and naringenin 7-O-methyltransferase activity. Jasmonic acid, ethylene, and active oxygen species are important as signal transducers in disease resistance mechanisms. However, although the endogenous level of jasmonic acid rapidly increased in reaction to wound, methionine treatment could not induced endogenous JA production. Ethylene induced the production of the flavonoid phytoalexin, sakuranetin, but did not induce the production of a terpenoid phytoalexin, momilactone A. On the other hand, a free radical scavenger, Tiron, counteracted the induction of both sakuranetin and momilactone A production in methionine-treated leaves. Active oxygen species may be important in methionine-induced production of phytoalexins. Topics: Cyclopentanes; Diterpenes; Ethylenes; Flavonoids; Free Radical Scavengers; Methionine; Molecular Structure; Oryza; Oxylipins; Phytoalexins; Plant Extracts; Plant Leaves; Sesquiterpenes; Terpenes | 2000 |
Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent.
Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Dijon (Di-17) results in the development of a hypersensitive response (HR) on the inoculated leaves. To assess the role of the recently cloned HRT gene in conferring resistance, we monitored both HR and resistance (lack of viral spread to systemic tissues) in the progeny of a cross between resistant Di-17 and susceptible Columbia plants. As expected, HR development segregated as a dominant trait that corresponded with the presence of HRT. However, all of the F(1) plants and three-fourths of HR(+) F(2) plants were susceptible to the virus. These results suggest the presence of a second gene, termed RRT, that regulates resistance to TCV. The allele present in Di-17 appears to be recessive to the allele or alleles present in TCV-susceptible ecotypes. We also demonstrate that HR formation and TCV resistance are dependent on salicylic acid but not on ethylene or jasmonic acid. Furthermore, these phenomena are unaffected by mutations in NPR1. Thus, TCV resistance requires a yet undefined salicylic acid-dependent, NPR1-independent signaling pathway. Topics: Arabidopsis; Base Sequence; Carmovirus; Cyclopentanes; DNA Primers; Ethylenes; Fungal Proteins; Genes, Plant; Oxylipins; Protein Kinases; Saccharomyces cerevisiae Proteins; Salicylic Acid; Signal Transduction | 2000 |
Fumonisin B1-induced cell death in arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation. Topics: Arabidopsis; Carboxylic Acids; Cell Death; Cyclopentanes; Ethylenes; Fumonisins; Oxylipins; Plant Growth Regulators; Protoplasts; Salicylates; Signal Transduction | 2000 |
Ozone-sensitive arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death.
We have isolated a codominant Arabidopsis mutant, radical-induced cell death1 (rcd1), in which ozone (O(3)) and extracellular superoxide (O(2)(*)-), but not hydrogen peroxide, induce cellular O(2)(*)- accumulation and transient spreading lesions. The cellular O(2)(*)- accumulation is ethylene dependent, occurs ahead of the expanding lesions before visible symptoms appear, and is required for lesion propagation. Exogenous ethylene increased O(2)(*)--dependent cell death, whereas impairment of ethylene perception by norbornadiene in rcd1 or ethylene insensitivity in the ethylene-insensitive mutant ein2 and in the rcd1 ein2 double mutant blocked O(2)(*)- accumulation and lesion propagation. Exogenous methyl jasmonate inhibited propagation of cell death in rcd1. Accordingly, the O(3)-exposed jasmonate-insensitive mutant jar1 displayed spreading cell death and a prolonged O(2)(*)- accumulation pattern. These results suggest that ethylene acts as a promoting factor during the propagation phase of developing oxyradical-dependent lesions, whereas jasmonates have a role in lesion containment. Interaction and balance between these pathways may serve to fine-tune propagation and containment processes, resulting in alternate lesion size and formation kinetics. Topics: Arabidopsis; Cell Death; Cyclopentanes; Ethyl Methanesulfonate; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Kinetics; Molecular Sequence Data; Mutagenesis; Oxylipins; Ozone; Plant Growth Regulators; Plant Leaves; Signal Transduction; Superoxides; Transcription, Genetic | 2000 |
Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen.
To identify components of the defense response that limit growth of a biotrophic fungal pathogen, we isolated Arabidopsis mutants with enhanced disease susceptibility to Erysiphe orontii. Our initial characterization focused on three mutants, eds14, eds15, and eds16. None of these is considerably more susceptible to a virulent strain of the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). All three mutants develop a hypersensitive response when infiltrated with Psm expressing the avirulence gene avrRpt2, which activates resistance via the LZ-NBS/LRR resistance protein encoded by RPS2. The growth of Psm(avrRpt2), while somewhat greater in the mutants than in the wild type, is less than growth of the isogenic virulent strain. These results indicate that resistance mediated via LZ-NBS/LRR R genes is functional. Analysis of the growth of avirulent Peronospora parasitica strains showed that the resistance pathway utilized by TIR-NBS/LRR R genes is also operative in all three mutants. Surprisingly, only eds14 and eds16 were more susceptible to Erysiphe cichoracearum. Analysis of the expression profiles of PR-1, BGL2, PR-5 and PDF1.2 in eds14, eds15, and eds16 revealed differences from the wild type for all the lines. In contrast, these mutants were not significantly different from wild type in the deposition of callose at sites of E. orontii penetration. All three mutants have reduced levels of salicylic acid after infection. eds16 was mapped to the lower arm of chromosome I and found by complementation tests to be allelic to the salicylic acid-deficient mutant sid2. Topics: Alleles; Arabidopsis; Ascomycota; Chromosome Mapping; Chromosome Segregation; Cyclopentanes; Ethylenes; Genes, Plant; Genetic Complementation Test; Genetic Predisposition to Disease; Glucans; Indoles; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Leaves; Salicylic Acid; Signal Transduction; Thiazoles | 2000 |
Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth.
The induction of plant defenses by insect feeding is regulated via multiple signaling cascades. One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae). The hookless1 mutation, which affects a downstream component of ethylene signaling, conferred resistance to Egyptian cotton worm as compared with wild-type plants. Likewise, ein2, a mutant in a central component of the ethylene signaling pathway, caused enhanced resistance to Egyptian cotton worm that was similar in magnitude to hookless1. Moreover, pretreatment of plants with ethephon (2-chloroethanephosphonic acid), a chemical that releases ethylene, elevated plant susceptibility to Egyptian cotton worm. By contrast, these mutations in the ethylene-signaling pathway had no detectable effects on diamondback moth (Plutella xylostella) feeding. It is surprising that this is not due to nonactivation of defense signaling, because diamondback moth does induce genes that relate to wound-response pathways. Of these wound-related genes, jasmonic acid regulates a novel beta-glucosidase 1 (BGL1), whereas ethylene controls a putative calcium-binding elongation factor hand protein. These results suggest that a specialist insect herbivore triggers general wound-response pathways in Arabidopsis but, unlike a generalist herbivore, does not react to ethylene-mediated physiological changes. Topics: Adaptation, Physiological; Amino Acid Sequence; Animals; Arabidopsis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Lepidoptera; Molecular Sequence Data; Organophosphorus Compounds; Oxylipins; Plant Growth Regulators; Salicylic Acid; Sequence Analysis, Protein; Signal Transduction | 2000 |
Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis.
Disease resistance in Arabidopsis is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) function as key signaling molecules. Epistasis analyses were performed between mutants that disrupt these pathways (npr1, eds5, ein2, and jar1) and mutants that constitutively activate these pathways (cpr1, cpr5, and cpr6), allowing exploration of the relationship between the SA- and JA/ET-mediated resistance responses. Two important findings were made. First, the constitutive disease resistance exhibited by cpr1, cpr5, and cpr6 is completely suppressed by the SA-deficient eds5 mutant but is only partially affected by the SA-insensitive npr1 mutant. Moreover, eds5 suppresses the SA-accumulating phenotype of the cpr mutants, whereas npr1 enhances it. These data indicate the existence of an SA-mediated, NPR1-independent resistance response. Second, the ET-insensitive mutation ein2 and the JA-insensitive mutation jar1 suppress the NPR1-independent resistance response exhibited by cpr5 and cpr6. Furthermore, ein2 potentiates SA accumulation in cpr5 and cpr5 npr1 while dampening SA accumulation in cpr6 and cpr6 npr1. These latter results indicate that cpr5 and cpr6 regulate resistance through distinct pathways and that SA-mediated, NPR1-independent resistance works in combination with components of the JA/ET-mediated response pathways. Topics: Arabidopsis; Cyclopentanes; Ethylenes; Mutation; Oxylipins; Salicylic Acid; Signal Transduction | 2000 |
Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis.
In Nicotiana sylvestris, a set of nicotine biosynthesis genes were activated by exogenous application of methyl jasmonate, but the activation was effectively suppressed by simultaneous treatment with ethylene. When N. sylvestris transgenic hairy roots were treated with a natural ethylene precursor, the jasmonate-responsive expression of the promoter from a nicotine pathway enzyme gene was completely suppressed, and this suppressive effect was abolished when ethylene perception was blocked with silver cation. These and additional immunoblot results suggest that ethylene signal antagonizes jasmonate signal in nicotine biosynthesis. Topics: Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Nicotiana; Nicotine; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Roots; Plants, Toxic; Silver | 2000 |
EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis.
Ethylene regulates plant growth, development, and responsiveness to a variety of stresses. Cloning of the Arabidopsis EIN2 gene identifies a central component of the ethylene signaling pathway. The amino-terminal integral membrane domain of EIN2 shows similarity to the disease-related Nramp family of metal-ion transporters. Expression of the EIN2 CEND is sufficient to constitutively activate ethylene responses and restores responsiveness to jasmonic acid and paraquat-induced oxygen radicals to mutant plants. EIN2 is thus recognized as a molecular link between previously distinct hormone response pathways. Plants may use a combinatorial mechanism for assessing various stresses by enlisting a common set of signaling molecules. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Carrier Proteins; Cation Transport Proteins; Cloning, Molecular; Cyclopentanes; Defensins; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Genes, Plant; Genetic Complementation Test; Herbicides; Iron-Binding Proteins; Membrane Proteins; Microsomes; Molecular Sequence Data; Mutation; Nuclear Proteins; Oxylipins; Paraquat; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Protein Biosynthesis; Protein Structure, Secondary; Receptors, Cell Surface; Signal Transduction; Transcription Factors | 1999 |
Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions.
Vacuolar processing enzyme (VPE) has been shown to be responsible for maturation of various seed proteins in protein-storage vacuoles. Arabidopsis has three VPE homologues; betaVPE is specific to seeds and alphaVPE and gammaVPE are specific to vegetative organs. To investigate the activity of the vegetative VPE, we expressed the gammaVPE in a pep4 strain of the yeast Saccharomyces cerevisiae and found that gammaVPE has the ability to cleave the peptide bond at the carbonyl side of asparagine residues. An immunocytochemical analysis revealed the specific localization of the gammaVPE in the lytic vacuoles of Arabidopsis leaves that had been treated with wounding. These findings indicate that gammaVPE functions in the lytic vacuoles as the betaVPE does in the protein-storage vacuoles. The betaVPE promoter was found to direct the expression of the beta-glucuronidase reporter gene in seeds and the root tip of transgenic Arabidopsis plants. On the other hand, both the alphaVPE and gammaVPE promoters directed the expression in senescent tissues, but not in young intact tissues. The mRNA levels of both alphaVPE and gammaVPE were increased in the primary leaves during senescence in parallel with the increase of the mRNA level of a senescence-associated gene (SAG2). Treatment with wounding, ethylene and salicylic acid up-regulated the expression of alphaVPE and gammaVPE, while jasmonate slightly up-regulated the expression of gammaVPE. These gene expression patterns of the VPEs were associated with the accumulation of vacuolar proteins that are known to respond to these treatments. Taken together, the results suggest that vegetative VPE might regulate the activation of some functional proteins in the lytic vacuoles. Topics: Amino Acid Sequence; Arabidopsis; Base Sequence; Cyclopentanes; Cysteine Endopeptidases; DNA Primers; Ethylenes; Gene Expression Regulation, Plant; Immunohistochemistry; Molecular Sequence Data; Oxylipins; RNA, Messenger; Salicylic Acid; Sequence Homology, Amino Acid; Up-Regulation; Vacuoles | 1999 |
Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.
The phytoalexin-deficient Arabidopsis mutant pad3-1, which is affected in the production of the indole-type phytoalexin camalexin, has previously been shown not to display altered susceptibility to either the bacterium Pseudomonas syringae (Glazebrook & Ausubel 1994; Proc. Natl. Acad. Sci. USA, 91: 8955-8959) or the biotrophic fungi Peronospora parasitica (Glazebrook et al. 1997; Genetics, 146: 381-392) and Erysiphe orontii (Reuber et al. 1998; Plant J. 16: 473-485). We now show that this mutant is markedly more susceptible than its wild-type parental line to infection by the necrotrophic fungus Alternaria brassicicola, but not to Botrytis cinerea. A strong camalexin response was elicited in wild-type plants inoculated with either Alternaria brassicicola or Botrytis cinerea, whereas no camalexin could be detected in pad3-1 challenged with these fungi. Hence, PAD3 appears to be a key determinant in resistance to at least A. brassicicola. The induction of salicylate-dependent and jasmonate/ethylene-dependent defense genes was not reduced in Alternaria-challenged pad3-1 plants compared to similarly treated wild-type plants. Camalexin production could not be triggered by exogenous application of either salicylate, ethylene or jasmonate and was not, or not strongly, reduced in mutants with defects in perception of these defense-related signal molecules. Camalexin-production appears to be controlled by a pathway that exhibits little cross-talk with salicylate-, ethylene- and jasmonate-dependent signalling events. Topics: Alternaria; Anti-Infective Agents; Antifungal Agents; Arabidopsis; Botrytis; Cyclopentanes; Defensins; Disease Susceptibility; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mutation; Oxylipins; Phytoalexins; Plant Diseases; Plant Extracts; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Sesquiterpenes; Terpenes; Thiazoles | 1999 |
Impaired fungicide activity in plants blocked in disease resistance signal transduction.
Fungicide action is generally assumed to be dependent on an antibiotic effect on a target pathogen, although a role for plant defense mechanisms as mediators of fungicide action has not been excluded. Here, we demonstrate that in Arabidopsis, the innate plant defense mechanism contributes to the effectiveness of fungicides. In NahG and nim1 (for noninducible immunity) Arabidopsis plants, which normally exhibit increased susceptibility to pathogens, the fungicides metalaxyl, fosetyl, and Cu(OH)2 are much less active and fail to control Peronospora parasitica. In contrast, the effectiveness of these fungicides is not altered in Arabidopsis mutants defective in the ethylene or jasmonic acid signal transduction pathways. Application of the systemic acquired resistance activator benzothiadiazole (BTH) in combination with these fungicides results in a synergistic effect on pathogen resistance in wild-type plants and an additive effect in NahG and BTH-unresponsive nim1 plants. Interestingly, BTH treatment normally induces long-lasting pathogen protection; however, in NahG plants, the protection is transient. These observations suggest that BTH treatment can compensate only partially for an impaired signal transduction pathway and support the idea that pathogen defense mechanisms are under positive feedback control. These observations are strikingly reminiscent of the reduced efficacy of antifungal agents in immunocompromised animals. Topics: Animals; Arabidopsis; Cyclopentanes; Drug Synergism; Ethylenes; Feedback; Fungicides, Industrial; Genes, Plant; Mutation; Oomycetes; Oxylipins; Plant Diseases; Signal Transduction; Thiadiazoles | 1998 |
Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade.
Cellulysin, a crude cellulase from the plant parasitic fungus Trichoderma viride, induces the biosynthesis of volatiles in higher plants (Nicotiana plumbaginifolia, Phaseolus lunatus, and Zea mays) when applied to cut petioles by the transpiration stream. The pattern of the emitted volatiles largely resembles that from a herbivore damage or treatment of the plants with jasmonic acid (JA) indicating that cellulysin acts via activation of the octadecanoid signalling pathway. The treatment with cellulysin raises the level of endogenous JA after 30 min and is followed by a transient emission of ethylene after 2-3 h. Volatile production becomes significant after 12-24 h. Inhibitors of the JA pathway effectively block the cellulysin-dependent volatile biosynthesis. Topics: Cellulase; Chromatography, Gas; Cyclopentanes; Ethylenes; Fabaceae; Kinetics; Nicotiana; Oxylipins; Plants; Plants, Medicinal; Plants, Toxic; Signal Transduction; Stearic Acids; Trichoderma; Zea mays | 1997 |