jasmonic-acid and 3-hexenal

jasmonic-acid has been researched along with 3-hexenal* in 3 studies

Other Studies

3 other study(ies) available for jasmonic-acid and 3-hexenal

ArticleYear
Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry.
    Scientific reports, 2019, 07-12, Volume: 9, Issue:1

    Green leaf volatiles are emitted by green plants and induce defence responses. Those with antifungal activities in plants may replace chemicals as natural post-harvest treatments. We investigated the postharvest treatment of strawberry with trans-2-hexenal and cis-3-hexenal and observed a decrease in the mould infection rate. To determine the volatiles' functions, we conducted a component analysis of the volatiles released from trans-2-hexenal-treated strawberry and analysed gene expression. Several acetates, which were expected to be metabolites of trans-2-hexenal in fruit, were released from treated strawberry; however, these acetates did not inhibit fungal growth. The gene expression analysis suggested that postharvest strawberries were not protected by jasmonic acid-mediated signalling but by another stress-related protein. Harvested strawberries experience stress induced by harvest-related injuries and are unable to perform photosynthesis, which might result in different responses than in normal plants.

    Topics: Aldehydes; Antifungal Agents; Botrytis; Cyclopentanes; Food Microbiology; Fragaria; Fruit; Gene Expression Regulation, Plant; Oxylipins; Volatile Organic Compounds

2019
α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).
    Journal of plant physiology, 2016, Mar-15, Volume: 192

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries.

    Topics: Abscisic Acid; Aldehydes; alpha-Linolenic Acid; Antioxidants; Arabidopsis Proteins; Cyclopentanes; Cytochrome P-450 Enzyme System; Dioxygenases; Fruit; Intramolecular Oxidoreductases; Lipoxygenase; Oxylipins; Phyllachorales; Plant Diseases; Plant Growth Regulators; Plant Proteins; Signal Transduction; Vitis

2016
Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato.
    Plant physiology, 2014, Volume: 166, Issue:1

    The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.

    Topics: Aldehydes; Animals; Cyclopentanes; Fatty Acids, Unsaturated; Food Preferences; Gene Expression Regulation, Plant; Herbivory; Larva; Manduca; Oviposition; Oxylipins; RNA Interference; Secondary Metabolism; Solanum lycopersicum; Terpenes; Trichomes

2014