jarosite and ferric-hydroxide

jarosite has been researched along with ferric-hydroxide* in 2 studies

Other Studies

2 other study(ies) available for jarosite and ferric-hydroxide

ArticleYear
Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China.
    Ecotoxicology and environmental safety, 2018, Jul-15, Volume: 155

    This article documents the new precipitates formed related to acid mine drainage (AMD) at Dabaoshan mine (South China). X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope & Energy Spectrometer (SEM-EDS) have been used to detect minerals in AMD impoundment and downstream creeks. The occurrences, the mineralogical species and the micro-morphological characteristics of secondary minerals from different pH conditions has been carried out. Iron- hydroxysulfates and iron-oxyhydroxides are the main secondary minerals, and they occurred as both poorly and well-crystalline minerals. Jarosite nearly predominate as pseudocubic crystals at pH 2.5-4.0. Schwertmannite-rich sediments occurred at pH 3.82-4.5 as urchin-like, pin-cushion and as well as globular-like aggregates and show high concentrations of Mn, Cu, Pb and As due to adsorption and co-precipitation. Goethite formed mainly as botryoidal and flaky assemblages. Paragenesis of different types of schwertmannite indicate that pH condition is not the dominant factor controlling morphology but the main parameter for the variation of minerals species. Statistical analysis reveal obvious changing tendency in Zn, Cd and SO

    Topics: Acids; Adsorption; China; Ferric Compounds; Iron; Iron Compounds; Minerals; Mining; Sulfates; Water Pollutants, Chemical

2018
Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Environmental monitoring and assessment, 2018, Jul-23, Volume: 190, Issue:8

    Acid mine drainage from mine tailings at Selebi Phikwe, eastern Botswana, has been investigated using a combination of total decomposition, sequential extraction, X-ray diffraction, Mössbauer spectroscopy, and SEM analyses of solid phase samples, water analyses, isotopic analyses, and geochemical modeling. The principal ferric phases in the seepage stream sediments are jarosite and goethite, which incorporate Ni and Cu. The Mössbauer spectroscopy (MS) indicated exclusively 3+ oxidation state of iron with typical features of ferric hydroxides/sulfates. A fraction of dissolved sulfate is also sequestered in gypsum which precipitates further downstream. Significant portions of Fe, Ni, and Cu are transported in suspension. Values of pH decreased downstream due to H

    Topics: Adsorption; Botswana; Copper; Environmental Monitoring; Ferric Compounds; Hydrogen-Ion Concentration; Industrial Waste; Iron; Iron Compounds; Minerals; Mining; Models, Chemical; Nickel; Sulfates; Sulfides; Water Pollutants, Chemical; X-Ray Diffraction

2018