isradipine has been researched along with tyrosine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (80.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Liu, J; Piotrowski, J; Slomiany, A; Slomiany, BL | 1 |
Liu, J; Slomiany, A; Slomiany, BL | 1 |
Fekete, Z; Liu, J; Murty, VL; Slomiany, A; Slomiany, BL | 1 |
An, RH; Hofmann, F; Ito, H; Kass, RS; Klugbauer, N; Lacinová, L; Triggle, D; Xia, J | 1 |
Hoda, JC; Huber, IG; Sinnegger-Brauns, MJ; Striessnig, J; Walter-Bastl, D; Wappl-Kornherr, E | 1 |
5 other study(ies) available for isradipine and tyrosine
Article | Year |
---|---|
Inhibition of EGF-induced gastric mucosal calcium channel phosphorylation by ebrotidine.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Anti-Ulcer Agents; Benzenesulfonates; Calcium Channels; Calcium Radioisotopes; Epidermal Growth Factor; Gastric Mucosa; Isradipine; Phosphorylation; Phosphotyrosine; Rats; Thiazoles; Tyrosine | 1992 |
Modulation of gastric mucosal calcium channel activity by sucralfate.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Calcium; Calcium Channels; Epidermal Growth Factor; Gastric Mucosa; In Vitro Techniques; Isradipine; Phosphorylation; Rats; Sucralfate; Tyrosine | 1992 |
Activation of dihydropyridine-sensitive parotid salivary gland calcium channels by epidermal growth factor.
Topics: Animals; Calcium; Calcium Channels; Calcium Radioisotopes; Cell Membrane; Dihydropyridines; Dose-Response Relationship, Drug; Epidermal Growth Factor; ErbB Receptors; Isradipine; Lanthanum; Liposomes; Male; Parotid Gland; Phosphorylation; Rats; Rats, Sprague-Dawley; Tyrosine | 1992 |
Distinctions in the molecular determinants of charged and neutral dihydropyridine block of L-type calcium channels.
Topics: Amino Acid Sequence; Amino Acid Substitution; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Cell Line; Cell Membrane; Dihydropyridines; Humans; Isradipine; Kinetics; Membrane Potentials; Models, Molecular; Mutagenesis, Site-Directed; Patch-Clamp Techniques; Protein Structure, Secondary; Recombinant Fusion Proteins; Recombinant Proteins; Threonine; Transfection; Tyrosine; Verapamil | 1999 |
Opposite effects of a single IIIS5 mutation on phenylalkylamine and dihydropyridine interaction with L-type Ca2+ channels.
Topics: Animals; Brain; Calcium; Calcium Channels; Calcium Channels, L-Type; Carrier Proteins; Cell Membrane; Dihydropyridines; DNA, Complementary; Dose-Response Relationship, Drug; Electrophysiology; Gallopamil; Homozygote; In Situ Hybridization; Isradipine; Kinetics; Mice; Mice, Transgenic; Microsomes; Models, Biological; Mutation; Oocytes; Protein Binding; Protein Structure, Tertiary; Recombinant Proteins; RNA, Complementary; Steroid Isomerases; Tyrosine; Verapamil; Xenopus laevis | 2004 |