iridoids and tyloxapol

iridoids has been researched along with tyloxapol* in 2 studies

Other Studies

2 other study(ies) available for iridoids and tyloxapol

ArticleYear
Geniposide alleviates non-alcohol fatty liver disease via regulating Nrf2/AMPK/mTOR signalling pathways.
    Journal of cellular and molecular medicine, 2020, Volume: 24, Issue:9

    Topics: AMP-Activated Protein Kinases; Animals; Gene Expression Regulation; Hep G2 Cells; Humans; Inflammation; Iridoids; Lipids; Male; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Palmitic Acid; Phosphatidylinositol 3-Kinases; Phosphorylation; Polyethylene Glycols; Signal Transduction; TOR Serine-Threonine Kinases

2020
Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.
    International immunopharmacology, 2016, Volume: 36

    Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo.

    Topics: 3T3 Cells; Adipocytes; Animals; Anti-Inflammatory Agents; Atherosclerosis; Chemokine CCL2; Disease Models, Animal; Humans; Inflammation; Interleukin-6; Iridoids; Lipid Metabolism; Mice; NF-kappa B; Phosphorylation; Polyethylene Glycols; Signal Transduction; Tumor Necrosis Factor-alpha

2016