iridoids and oleuropein-aglycone

iridoids has been researched along with oleuropein-aglycone* in 4 studies

Other Studies

4 other study(ies) available for iridoids and oleuropein-aglycone

ArticleYear
Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil.
    International journal of biological macromolecules, 2020, Nov-01, Volume: 162

    Loss of β-cell function and β-cell death is the key feature of type 2 diabetes mellitus (T2DM). One hypothesis for the mechanism of this feature is amyloid formation by the human islet amyloid polypeptide (hIAPP). Despite the global prevalence of T2DM, there are no therapeutic strategies for the treatment of or prevention of amylin amyloidosis. Clinical trials and population studies indicate the healthy virtues of the Mediterranean diet, especially the extra virgin olive oil (EVOO) found in this diet. This oil is enriched in phenolic compounds shown to be effective against several aging and lifestyle diseases. Oleuropein (Ole), one of the most abundant polyphenols in EVOO, has been reported to be anti-diabetic. Some of Ole's main derivative have attracted our interest due to their multi-targetted effects, including interference with amyloid aggregation path. However, the structure-function relationship of Ole and its metabolites in T2DM are not yet clear. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which tyrosol (TYR), hydroxytyrosol (HT), oleuropein (Ole) and oleuropein aglycone (OleA) modulate the hIAPP fibrillation in vitro and their effects on cell cytotoxicity. The OleA formed by enolic acid and hydroxytyrosol moiety was found to be more active than the Ole and HT at low micromolar concentrations. We further demonstrated that OleA inhibit the cytotoxicity induced by hIAPP aggregates by protecting more the cell membrane from permeabilization and then from death. These findings highlight the benefits of consuming EVOO and the great potential of its polyphenols, mainly OleA. Moreover, they support the possibility to validate and optimize the possible pharmacological use of EVOO polyphenols for T2DM prevention and therapy and also for many other amyloid related diseases.

    Topics: Acetates; Cell Survival; Cyclopentane Monoterpenes; Diabetes Mellitus, Type 2; Diet, Mediterranean; Fluorescence; Humans; Inhibitory Concentration 50; Iridoid Glucosides; Iridoids; Islet Amyloid Polypeptide; Islets of Langerhans; Microscopy, Atomic Force; Olive Oil; Phenylethyl Alcohol; Phospholipids; Pyrans; Structure-Activity Relationship

2020
A comprehensive study of oleuropein aglycone isomers in olive oil by enzymatic/chemical processes and liquid chromatography-Fourier transform mass spectrometry integrated by H/D exchange.
    Talanta, 2019, Dec-01, Volume: 205

    A comprehensive structural characterization of the complex family of isomeric forms related to Oleuropein aglycone (OA) detected in virgin olive oil (VOO) was performed by reverse phase liquid chromatography with electrospray ionization and Fourier-transform mass spectrometry (RPLC-ESI-FTMS), integrated by enzymatic/chemical reactions performed on Oleuropein, the natural precursor of OA. First, some of the OA-related isomers typically observed in VOO extracts were generated upon enzymatic hydrolysis of the glycosidic linkage of Oleuropein. This step mimicked the process occurring during olive drupes crushing in the first stage of oil production. The incubation of the enzymatic reaction mixture at a more acidic pH was subsequently performed, to simulate the conditions of olive paste malaxation during oil production. As a result, further isomeric forms were generated and the complex chromatographic profile typically observed for OA in olive oil extracts, including at least 13 different peaks/bands/groups of peaks, was carefully reproduced. Each of those chromatographic features could be subsequently assigned to specific types of OA-related isomers, belonging to one of four structurally different classes. Specifically, diastereoisomers/geometrical isomers corresponding to two different types of open-structure forms and to as many types of closed-structure, di-hydropyranic forms of OA, characterized by the presence of one or two carbonyl groups, according to the case, were evidenced. In addition, the presence of stable enolic/dienolic tautomers, providing an indirect structural confirmation for some OA isomers, was ascertained through RPLC-ESI-FTMS analyses performed under H/D exchange conditions, i.e. in the presence of deuterated water as one of the mobile phase solvents.

    Topics: Acetates; beta-Glucosidase; Chromatography, Reverse-Phase; Cyclopentane Monoterpenes; Deuterium; Fourier Analysis; Hydrolysis; Iridoid Glucosides; Iridoids; Isomerism; Liquid-Liquid Extraction; Olea; Olive Oil; Pyrans; Tandem Mass Spectrometry

2019
Evaluation of phenolic composition and antioxidant activity changes in olive flowers during development using HPLC/DAD and LC-MS/MS.
    Electrophoresis, 2018, Volume: 39, Issue:13

    Olive fruit and leaves have been extensively studied for their chemical compositions and biological activities. However, less attention has been given to its flowers. The present research was achieved on Tunisian olive flowers. It aimed at studying the effects of flower development on phenolic compounds and antioxidant activity. The extracts were analyzed using high performance liquid chromatography coupled to diode array detection (HPLC/DAD) and coupled to mass spectrometry (LC-MS/MS). The HPLC/DAD analysis indicated that oleuropein aglycon (from 1.158 to 3.746 g/kg), followed by hydroxytyrosol (from 0.168 to 1.581 g/kg) and oleoside (from 0.143 to 1.325 g/kg) were the predominant phenolics in olive flowers extracts during development stages. Twenty compounds have been identified, revealing the complex profile of olive flowers, composed, in order of abundance, by secoiridoids, phenolic alcohols, lignans, flavonoids and phenolic acids. Total phenolic contents increased from 2.455 to 8.541 g/kg Gallic acid equivalent per kg of fresh flowers during all steps of the flower development. A correlation between antioxidant activity and total phenolic contents was determined.

    Topics: Acetates; Antioxidants; Chromatography, High Pressure Liquid; Cyclopentane Monoterpenes; Flavonoids; Flowers; Fruit; Hydroxybenzoates; Iridoids; Lignans; Olea; Phenols; Phenylethyl Alcohol; Plant Leaves; Pyrans; Tandem Mass Spectrometry

2018
Oleuropein aglycone enhances UCP1 expression in brown adipose tissue in high-fat-diet-induced obese rats by activating β-adrenergic signaling.
    The Journal of nutritional biochemistry, 2017, Volume: 40

    Oleuropein is the pungent principle of raw olives. Oleuropein aglycone (OA) is a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein. We aimed to determine the mechanism underlying the nutritional effects of oleuropein and OA on interscapular brown adipose tissue (IBAT) in rats with high-fat (HF) diet-induced obesity by examining the agonistic activity of oleuropein and OA toward the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). Four-week-old male Sprague-Dawley rats were fed an HF (palm oil 30% wt:wt) diet alone or with oleuropein (HF-O, 1 g/kg diet) for 28 days. In rats fed HF-O compared to HF, urinary noradrenaline, adrenaline and UCP1 levels in IBAT were significantly higher, whereas plasma leptin levels and the total weight of the abdominal cavity adipose tissue were significantly lower. In anaesthetized 7-week-old male Sprague-Dawley rats, the OA (3.8 mg of intravenous injection)-induced increase in plasma noradrenaline secretion was suppressed by TRPA1 or TRPV1 antagonist and by a β2- or β3-adrenoceptor antagonist. Furthermore, OA-activated rat and human TRPV1s expressed on HEK293 cells at the same level as zingerone (pungent component in ginger). OA also activated humanTRPA1, and its potency was approximately 10-fold stronger than that for TRPV1. These findings suggest that OA is the agonist of both TRPA1 and TRPV1 and that OA enhances UCP1 expression in IBAT with a concomitant decrease in the visceral fat mass of HF-diet-induced obese rats through enhanced noradrenaline secretion via β-adrenergic action following TRPA1 and TRPV1 activation.

    Topics: Acetates; Adipose Tissue, Brown; Animals; Catecholamines; Cyclopentane Monoterpenes; Diet, High-Fat; Epinephrine; HEK293 Cells; Humans; Iridoid Glucosides; Iridoids; Male; Norepinephrine; Obesity; Pyrans; Rats, Sprague-Dawley; Signal Transduction; TRPA1 Cation Channel; TRPV Cation Channels; Uncoupling Protein 1

2017