iridoids and nepetalactone

iridoids has been researched along with nepetalactone* in 7 studies

Other Studies

7 other study(ies) available for iridoids and nepetalactone

ArticleYear
In vivo characterization of key iridoid biosynthesis pathway genes in catnip (Nepeta cataria).
    Planta, 2022, Oct-12, Volume: 256, Issue:5

    Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.

    Topics: Cyclopentane Monoterpenes; Iridoids; Nepeta; Pyrones

2022
The evolutionary origins of the cat attractant nepetalactone in catnip.
    Science advances, 2020, Volume: 6, Issue:20

    Catnip or catmint (

    Topics: Cyclopentane Monoterpenes; Iridoids; Nepeta; Phylogeny; Pyrones

2020
Virus-Induced Gene Silencing in Nepeta.
    Methods in molecular biology (Clifton, N.J.), 2020, Volume: 2172

    Virus-induced gene silencing (VIGS) is a versatile tool for genetic studies that has been applied to a variety of plant species. With the advent of more accessible genomic and transcriptomic technology applied to an increasing range of plants, tools such as VIGS are being adapted to more non-model plants to explore genes relevant to agriculture and chemical discovery. In this protocol, we adapted VIGS technology to target genes in Nepeta cataria (catnip) and Nepeta mussinii (catmint). These plants carry biochemical and economical value for their production of nepetalactone, an iridoid which provokes a strong reaction in both house cats and aphids. We describe a method to target magnesium chelatase subunit H (CHlH), a gene often targeted as a visual marker for VIGS. Furthermore, we describe a method to simultaneously target two genes in a single plant, which aids in the study of genes found in key biochemical steps in the production of nepetalactone. This approach, which was successfully applied in two members of the Lamiaceae family (mint), could be adapted to other members of the mint family with economical and chemical value.

    Topics: Cyclopentane Monoterpenes; Gene Silencing; Iridoids; Lamiaceae; Lyases; Nepeta; Pyrones

2020
Identification of iridoid synthases from Nepeta species: Iridoid cyclization does not determine nepetalactone stereochemistry.
    Phytochemistry, 2018, Volume: 145

    Nepetalactones are iridoid monoterpenes with a broad range of biological activities produced by plants in the Nepeta genus. However, none of the genes for nepetalactone biosynthesis have been discovered. Here we report the transcriptomes of two Nepeta species, each with distinctive profiles of nepetalactone stereoisomers. As a starting point for investigation of nepetalactone biosynthesis in Nepeta, these transcriptomes were used to identify candidate genes for iridoid synthase homologs, an enzyme that has been shown to form the core iridoid skeleton in several iridoid producing plant species. Iridoid synthase homologs identified from the transcriptomes were cloned, heterologously expressed, and then assayed with the 8-oxogeranial substrate. These experiments revealed that catalytically active iridoid synthase enzymes are present in Nepeta, though there are unusual mutations in key active site residues. Nevertheless, these enzymes exhibit similar catalytic activity and product profile compared to previously reported iridoid synthases from other plants. Notably, four nepetalactone stereoisomers with differing stereochemistry at the 4α and 7α positions - which are generated during the iridoid synthase reaction - are observed at different ratios in various Nepeta species. This work strongly suggests that the variable stereochemistry at these 4α and 7α positions of nepetalactone diastereomers is established further downstream in the iridoid pathway in Nepeta. Overall, this work provides a gateway into the biosynthesis of nepetalactones in Nepeta.

    Topics: Biocatalysis; Cyclization; Cyclopentane Monoterpenes; Cyclopentanes; Iridoids; Molecular Structure; Nepeta; Oxidoreductases; Pyrones; Stereoisomerism

2018
Divergent synthetic route to new cyclopenta[c]pyran iridoids: syntheses of jatamanin A, F, G and J, gastrolactone and nepetalactone.
    Organic & biomolecular chemistry, 2016, Jan-28, Volume: 14, Issue:4

    Six natural iridoids including jatamanin A, F, G and J, gastrolactone and nepetalactone have been synthesized via the efficient transformation of a core cyclopenta[c]pyran intermediate. Key features of the syntheses include the stereoselective construction of the core cyclopenta[c]pyran skeleton of the iridoid lactones via a Pd(0)-catalyzed intramolecular allylic alkylation, and the facile transformation of the common intermediate into natural iridoids.

    Topics: Cyclopentane Monoterpenes; Cyclopentanes; Iridoids; Lactones; Molecular Conformation; Pyrones; Stereoisomerism

2016
Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites.
    Phytochemistry, 2011, Volume: 72, Issue:1

    The repellent activity of the essential oil of the catmint plant, Nepeta cataria (Lamiaceae), and the main iridoid compounds (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone, was assessed against (i) major Afro-tropical pathogen vector mosquitoes, i.e. the malaria mosquito, Anopheles gambiae s.s. and the Southern house mosquito, Culex quinquefasciatus, using a World Health Organisation (WHO)-approved topical application bioassay (ii) the brown ear tick, Rhipicephalus appendiculatus, using a climbing repellency assay, and (iii) the red poultry mite, Dermanyssus gallinae, using field trapping experiments. Gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS) analysis of two N. cataria chemotypes (A and B) used in the repellency assays showed that (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone were present in different proportions, with one of the oils (from chemotype A) being dominated by the (4aS,7S,7aR) isomer (91.95% by GC), and the other oil (from chemotype B) containing the two (4aS,7S,7aR) and (4aS,7S,7aS) isomers in 16.98% and 69.83% (by GC), respectively. The sesquiterpene hydrocarbon (E)-(1R,9S)-caryophyllene was identified as the only other major component in the oils (8.05% and 13.19% by GC, respectively). Using the topical application bioassay, the oils showed high repellent activity (chemotype A RD(50)=0.081 mg cm(-2) and chemotype B RD(50)=0.091 mg cm(-2)) for An. gambiae comparable with the synthetic repellent DEET (RD(50)=0.12 mg cm(-2)), whilst for Cx. quinquefasciatus, lower repellent activity was recorded (chemotype A RD(50)=0.34 mg cm(-2) and chemotype B RD(50)=0.074 mg cm(-2)). Further repellency testing against An. gambiae using the purified (4aS,7S,7aR) and (4aS,7S,7aS)-nepetalactone isomers revealed overall lower repellent activity, compared to the chemotype A and B oils. Testing of binary mixtures of the (4aS,7S,7aR) and (4aS,7S,7aS) isomers across a range of ratios, but all at the same overall dose (0.1 mg), revealed not only a synergistic effect between the two, but also a surprising ratio-dependent effect, with lower activity for the pure isomers and equivalent or near-equivalent mixtures, but higher activity for non-equivalent ratios. Furthermore, a binary mixture of (4aS,7S,7aR) and (4aS,7S,7aS) isomers, in a ratio equivalent to that found in chemotype B oil, was less repellent than the oil itself, when tested at two doses equivalent to 0.1 and 0.01 mg chemotype B oil. The three-component blend including (E)-(1R,9S)-caryophy

    Topics: Africa; Animals; Culicidae; Cyclopentane Monoterpenes; Cyclopentanes; DEET; Humans; Insect Repellents; Iridoids; Livestock; Mites; Molecular Structure; Nepeta; Plant Oils; Polycyclic Sesquiterpenes; Pyrones; Sesquiterpenes; Stereoisomerism; Ticks; World Health Organization

2011
Semiochemistry of the goldeneyed lacewing Chrysopa oculata: attraction of males to a male-produced pheromone.
    Journal of chemical ecology, 2004, Volume: 30, Issue:9

    Gas chromatographic-electroantennographic detection (G3C-EAD) experiments showed that antennae of males and females of the goldeneyed lacewing, Chrysopa oculata Say (Co. = Chrysopa), consistently responded to four compounds extracted from the abdominal cuticle of males:nonanal, nonanol, nonanoic acid, and (1R*,2S*,5R*,8R*)-iridodial. These compounds were not detected from abdominal cuticle of females. Thoracic extracts of both sexes contained antennal-stimulatory 1-tridecene and EAD-inactive skatole. Chrysopa oculata adults were most sensitive to (1R,2S,5R,8R)-iridodial standard at an EAD-response threshold between 0.1 and 1 pg, which was 10-100 times lower than thresholds for nonanal and nonanoic acid, and up to 10,000 times lower than thresholds for other compounds tested. A similar EAD response pattern was also found in another Chrysopa sp. (Co. quadripunctata Burmeister). In field-trapping experiments, (1R,2S,5R,8R)-iridodial was the only male-specific compound that attracted Co. oculata males. Males also were weakly attracted to (1R,4aS,7S,7aR)-nepetalactol (an aphid sex pheromone component), probably due to the 5% (1R,2S,5R,8R)-iridodial present in the synthetic sample as an impurity. A herbivore-induced plant volatile, methyl salicylate, increased attraction of males to (1R,2S,5R,8R)-iridodial, whereas 1-tridecene was antagonistic. No females were caught in the entire study. Scanning electron micrographs revealed numerous male-specific, elliptical epidermal glands on the 3rd-8th abdominal sternites of Co. oculata, which are likely the pheromone glands. Another lacewing species, Chrysoperla rufilabris (Burmeister) (Cl. = Chrysoperla), did not produce male-specific volatiles or possess the type of gland presumed to produce pheromone in Co. oculata males, but (Z)-4-tridecene was identified as a major antennal-stimulatory compound from thoracic extracts of both sexes of Cl. rufilabris. Thus, (1R,2S,5R,8R)-iridodial (or its enantiomer) is now identified as a male-produced male aggregation pheromone for Co. oculata, the first pheromone identified for lacewings.

    Topics: Aldehydes; Alkanes; Alkenes; Animals; Cyclopentane Monoterpenes; Cyclopentanes; Fatty Acids; Female; Heteroptera; Iridoids; Male; Pyrones; Scent Glands; Sex Attractants; Skatole; Smell; Stereoisomerism

2004