iodoresiniferatoxin and capsazepine

iodoresiniferatoxin has been researched along with capsazepine* in 13 studies

Other Studies

13 other study(ies) available for iodoresiniferatoxin and capsazepine

ArticleYear
Expression and functionality of TRPV1 receptor in human MCF-7 and canine CF.41 cells.
    Veterinary and comparative oncology, 2015, Volume: 13, Issue:2

    As canine mammary tumours (CMT) and human breast cancer share clinical and prognostic features, the former have been proposed as a model to study carcinogenesis and improved therapeutic treatment in human breast cancer. In recent years, it has been shown that transient receptor potential vanilloid 1 (TRPV1) is expressed in different neoplastic tissues and its activation has been associated with regulation of cancer growth and progression. The aim of the present research was to demonstrate the presence of TRPV1 in human and canine mammary cancer cells, MCF-7 and CF.41, respectively, and to study the role of TRPV1 in regulating cell proliferation. The images obtained by Western blot showed a signal at 100 kDa corresponding to the molecular weight of TRPV1 receptor. All tested TRPV1 agonists and antagonists caused a significant decrease (P < 0.05) of cell growth rate in MCF-7 cells. By contrast, in CF.41 cells capsaicin and capsazepine induced a significant increase (P < 0.05) in cell proliferation, whereas resiniferatoxin (RTX) and 5-iodo-resiniferatoxin (5-I-RTX) had no influence on CF.41 cell proliferation. Further studies are needed to elucidate the underlying molecular mechanism responsible for the different effects evoked by TRPV1 activation in MCF-7 and CF.41 cells.

    Topics: Adenocarcinoma; Animals; Breast Neoplasms; Capsaicin; Cell Line, Tumor; Cell Proliferation; Diterpenes; Dogs; Female; Gene Expression Regulation, Neoplastic; Humans; Mammary Neoplasms, Animal; MCF-7 Cells; TRPV Cation Channels

2015
Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy.
    Neuroscience, 2015, May-07, Volume: 293

    Calcium ion accumulation into the cytosol of the hippocampus and dorsal root ganglion (DRG) are main reasons in etiology of epilepsy. Transient receptor potential vanilloid type 1 (TRPV1) channel is a cation-permeable calcium channel found in the DRG and hippocampus. Although previous studies implicate TRPV1 channels in the generation of epilepsy, suppression of ongoing seizures by TRPV1 antagonists has not yet been investigated. We tested the effects of TRPV1-specific antagonists, capsazepine (CPZ) and 5'-iodoresiniferatoxin (IRTX) on the modulation of calcium accumulation, apoptosis and anticonvulsant properties in the hippocampus and DRG of pentylentetrazol (PTZ) and capsaicin (CAP) administrated rats. Forty rats were divided into five groups as follows; control, PTZ, CAP+PTZ, IRTX, and IRTX+PTZ. Fura-2 and patch-clamp experiments were performed on neurons dissected from treated animals by CAP and CPZ. PTZ and CAP+PTZ administrations increased intracellular free Ca(2+) concentrations, TRPV1 current densities, apoptosis, caspase 3 and 9 values although the values were reduced by IRTX and CPZ treatments. Latency time was extended by application CPZ and IRTX although CAP produced acceleration of epileptic seizures. Taken together, these results support a role for TRPV1 channels in the inhibition of apoptosis, epileptic seizures and calcium accumulation, indicating that TRPV1 inhibition may possibly be a novel target in the DRG and hippocampus for prevention of epileptic seizures and peripheral pain.

    Topics: Animals; Apoptosis; Calcium; Capsaicin; Diterpenes; Epilepsy; Ganglia, Spinal; Hippocampus; Male; Neurons; Pentylenetetrazole; Rats; Rats, Wistar; TRPV Cation Channels

2015
Glycolic acid induces keratinocyte proliferation in a skin equivalent model via TRPV1 activation.
    Journal of dermatological science, 2010, Volume: 57, Issue:2

    Glycolic acid (GA) is the most commonly used alpha-hydroxy acid (AHA) for dermatologic applications, and is considered as a versatile superficial peeling agent for facial rejuvenation. Its therapeutic effect includes acceleration of epidermal turnover without apparent inflammation, and its action is pH-dependent. However, little is known about the molecular mechanism of GA-induced peeling.. To investigate the effects of topical application of GA on cell proliferation using a skin equivalent model and to examine the molecular mechanisms of GA-induced peeling.. GA solution was applied on the surface of a skin equivalent model, and cell proliferation was measured by means of BrdU-incorporation and immunohistochemical methods. Release of chemical mediators such as ATP into the medium was examined. The effects of antagonists of ion channels were also analyzed.. At 24h after GA application, BrdU-incorporation into basal keratinocytes was significantly increased. Induction of keratinocyte proliferation was pH-dependent, and was inhibited by antagonists of TRPV1, an acid-sensitive ion channel. Furthermore, transient ATP release was detected in the culture medium after GA stimulation, and this was also suppressed by TRPV1 antagonists.. These results suggest that one of the mechanisms of GA-induced epidermal proliferation is a growth response of basal keratinocytes to the local elevation of H(+)-ion concentration by infiltrated GA. This response is mediated by TRPV1 activation and ATP release. Activation of P2 receptors by the released ATP may also be involved.

    Topics: Adenosine Triphosphate; Calcium; Capsaicin; Cell Proliferation; Cells, Cultured; Diterpenes; Glycolates; Humans; Immunohistochemistry; Keratinocytes; Skin, Artificial; TRPV Cation Channels

2010
Neuroprotection induced by vitamin E against oxidative stress in hippocampal neurons: involvement of TRPV1 channels.
    Molecular nutrition & food research, 2010, Volume: 54, Issue:4

    Pretreatment of cultured hippocampal neurons with a low concentration of alpha-tocopherol (alpha-TP), the major component of vitamin E, results in a long-lasting protection against oxidative damages, via genomic effects. This neuroprotection is associated with the attenuation of a calcium influx triggered by oxidative agents such as Fe(2+) ions. This Ca(2+) influx is supported by a TRP-like channel, also partly involved in capacitive calcium entry within neurons. Here, we evidence the contribution of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin, the pungent component of hot chili peppers and blocked by capsazepine (CPZ) or 5'-iodo-resiniferatoxin. Both TRPV1 inhibitors strongly reduced Fe(2+) ion-mediated toxicity and Ca(2+) influx, in the same way as to alpha-TP pretreatment. Moreover, CPZ also decreased capacitive calcium entry in hippocampal neurons. Finally, both CPZ and 5'-iodo-resiniferatoxin reduced spontaneous excitatory synaptic transmission; this depression of synaptic transmission being largely occluded in alpha-TP-pretreated neurons. In conclusion, in our experimental model, TRPV1 channels are involved in the Fe(2+) ion-induced neuronal death and a negative modulation of this channel activity by alpha-TP pretreatment may account, at least in part, for the long-lasting neuroprotection against oxidative stress.

    Topics: alpha-Tocopherol; Animals; Calcium; Capsaicin; Cell Death; Cells, Cultured; Diterpenes; Electric Conductivity; Ferrous Compounds; Glutamic Acid; Hippocampus; Neurons; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Sprague-Dawley; Synaptic Transmission; TRPV Cation Channels

2010
Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells.
    FEBS letters, 2009, Jan-05, Volume: 583, Issue:1

    In this study, capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) induced an increase in the cell viability of the androgen-responsive prostate cancer LNCaP cells, which was reversed by the use of the TRPV1 antagonists capsazepine, I-RTX and SB 366791. In further studies we observed that capsaicin induced a decrease in ceramide levels as well as Akt and Erk activation. To investigate the mechanism of capsaicin action we measured androgen (AR) receptor levels. Capsaicin induced an increase in the AR expression that was reverted by the three TRPV1 antagonists. AR silencing by the use of siRNA, as well as blocking the AR receptor with bicalutamide, inhibited the proliferative effect of capsaicin.

    Topics: Anilides; Capsaicin; Capsicum; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cinnamates; Diterpenes; Gene Silencing; Humans; Male; Mitogen-Activated Protein Kinase Kinases; Phosphatidylinositol 3-Kinases; Prostate; Receptors, Androgen; RNA, Small Interfering; TRPV Cation Channels

2009
Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice.
    Neuroscience letters, 2009, Jul-17, Volume: 458, Issue:2

    Oxaliplatin is a chemotherapy drug and induces peripheral neuropathy which is aggravated by exposure to cold, the mechanism of which is unclear. In the present study, we investigated in mice whether transient receptor potential melastatin 8 (TRPM8), which is activated by cooling temperature, would be involved in cold allodynia induced by oxaliplatin. Mice were given an intraperitoneal injection of oxaliplatin. Acetone was applied to hind paw for cooling stimulation, and the time spent for licking to the hind paw was measured. The expression of TRPM8 mRNA in dorsal root ganglion was determined by the RT-PCR method. An injection of oxaliplatin induced cold allodynia, which peaked on day 3 after injection and did not disappear even on day 25. Peak cold allodynia was inhibited by capsazepine, a blocker of both TRPM8 and heat-activated TRPV1, but not by 5'-iodoresiniferatoxin, a TRPV1 blocker. Oxaliplatin increased wet-dog shake and jumping behaviors evoked by the TRPM8 agonist icilin. An injection of oxaliplatin increased the expression level of TRPM8 mRNA at day 3 after injection and the expression was decreased to the near-normal level on days 10 and 25. These results suggest that cold allodynia induced by oxaliplatin is at least partly due to the increased expression of TRPM8 in the primary afferents.

    Topics: Animals; Capsaicin; Cold Temperature; Diterpenes; Ganglia, Spinal; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Organoplatinum Compounds; Oxaliplatin; Pain Measurement; Pain Threshold; Physical Stimulation; RNA, Messenger; Time Factors; TRPM Cation Channels; Up-Regulation

2009
Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death.
    Journal of neurochemistry, 2007, Volume: 102, Issue:3

    The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.

    Topics: Arachidonic Acids; Calcium; Calcium Signaling; Capsaicin; Cell Culture Techniques; Cell Death; Cell Line, Tumor; Cell Proliferation; Diterpenes; Dopamine; Endocannabinoids; Humans; Models, Biological; Neuroblastoma; Neurons; Norepinephrine; Polyunsaturated Alkamides; Recombinant Proteins; Synaptic Transmission; Transfection; TRPV Cation Channels; Up-Regulation

2007
Participation of the spinal TRPV1 receptors in formalin-evoked pain transduction: a study using a selective TRPV1 antagonist, iodo-resiniferatoxin.
    The Journal of pharmacy and pharmacology, 2006, Volume: 58, Issue:4

    The involvement of spinal transient receptor potential vanilloid 1 (TRPV1) in formalin-evoked pain has remained unclear, because investigation of this kind of pain with selective antagonists has not been conducted. The purpose of this study is to investigate the participation of spinal TRPV1 in formalin-evoked pain with iodo-resiniferatoxin (I-RTX), a potent TRPV1-selective antagonist. I-RTX given intrathecally dose-dependently and significantly decreased the number of flinching responses in the formalin-evoked 1st and 2nd phase with ID50 values (drug dose producing 50% inhibition of response) of 1.0 and 3.8 microg, respectively, and concentration-dependently suppressed capsaicin-evoked calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) release from rat spinal cord slices with an IC50 value (drug concentration producing 50% inhibition of response) of 86 nM. Capsazepine, a classical non-selective TRPV1 antagonist, given intrathecally also inhibited formalin-evoked flinching in both the 1st and 2nd phase with ID50s of 420 and 200 microg, respectively, and CGRP-LI release from rat spinal cord slices with an IC50 of 7.8 microM. Ratios of in-vivo analgesic potencies of I-RTX and capsazepine well reflected their intrinsic in-vitro activity. These findings suggest that spinal TRPV1 participates in the transduction system of formalin-evoked pain.

    Topics: Animals; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Male; Pain Measurement; Rats; Rats, Sprague-Dawley; Spinal Cord; TRPV Cation Channels

2006
Tactile allodynia initiated by local subcutaneous endothelin-1 is prolonged by activation of TRPV-1 receptors.
    Experimental biology and medicine (Maywood, N.J.), 2006, Volume: 231, Issue:6

    Subcutaneous endothelin-1 (ET-1; 200 microM, 2 nmoles/paw) injected into the rat hind paw, has been shown to cause robust hind paw flinching (HPF) and paw licking, and to induce impulses selectively in primary nociceptors. Here we report that a much lower [ET-1] sensitizes the paw to a nocifensive withdrawal response to tactile stimulation (by von Frey hairs, VFH), a sensitization that involves local TRPV1 receptors. Injection of 10 microM ET-1 (0.1 nmole/paw) causes only marginal HPF but rapidly (20 mins after injection) lowers the force threshold for paw withdrawal (PWT) to VFH, to approximately 30% of pre-injection baseline. Such tactile allodynia persists for 3 hrs. In rats pre-injected with the TRPV1-antagonists capsazepine (CPZ; 1.33 mM) or 5'-iodoresiniferatoxin (I-RTX; 0.13 microM), 15 min before ET-1, a fast initial drop in PWT, as with ET-1 alone, occurs (to 40% or to 19% of baseline, respectively), but this earliest reduction then regresses back to the pre-injection PWT value more rapidly than with ET-1 alone. The recovery of allodynia from the maximum value is about two times faster for ET-1+CPZ and about 4 times faster for ET-1+ I-RTX, compared with that from ET-1 +vehicle (t(1/2) = 130, 60, and 250 mins, respectively). In contrast, spontaneous pain indicated by overt HPF from ET-1 is not attenuated by TRPV1 antagonists. Tactile allodynia is similarly abbreviated by antagonists of both ET(A) (BQ-123, 32 nmoles/paw) and ET(B) (BQ-788, 30 nmoles/paw) receptors, whereas HPF is abolished by this ET(A) antagonist but enhanced by the ET(B) antagonist. We conclude that low ET-1 causes tactile allodynia, which is characterized by a different time-course and pharmacology than ET-1-induced nociception, and that local TRPV1 receptors are involved in the maintenance of this ET-1-induced allodynia but not in the overt algesic action of ET-1.

    Topics: Animals; Behavior, Animal; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Endothelin-1; Injections, Subcutaneous; Male; Nociceptors; Pain; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Endothelin A; Touch; TRPV Cation Channels

2006
Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release.
    Journal of immunology (Baltimore, Md. : 1950), 2006, Oct-01, Volume: 177, Issue:7

    The present study examined the expression of transient receptor potential vanilloid subtype 1 (TRPV1) in microglia, and its association with microglial cell death. In vitro cell cultures, RT-PCR, Western blot analysis, and immunocytochemical staining experiments revealed that rat microglia and a human microglia cell line (HMO6) showed TRPV1 expression. Furthermore, exposure of these cells to TRPV1 agonists, capsaicin (CAP) and resiniferatoxin (RTX), triggered cell death. This effect was ameliorated by the TRPV1 antagonists, capsazepine and iodo-resiniferatoxin (I-RTX), suggesting that TRPV1 is directly involved. Further examinations revealed that TRPV1-induced toxicity was accompanied by increases in intracellular Ca(2+), and mitochondrial damage; these effects were inhibited by capsazepine, I-RTX, and the intracellular Ca(2+) chelator BAPTA-AM. Treatment of cells with CAP or RTX led to increased mitochondrial cytochrome c release and enhanced immunoreactivity to cleaved caspase-3. In contrast, the caspase-3 inhibitor z-DEVD-fmk protected microglia from CAP- or RTX-induced toxicity. In vivo, we also found that intranigral injection of CAP or 12-hydroperoxyeicosatetraenoic acid, an endogenous agonist of TRPV1, into the rat brain produced microglial damage via TRPV1 in the substantia nigra, as visualized by immunocytochemistry. To our knowledge, this study is the first to demonstrate that microglia express TRPV1, and that activation of this receptor may contribute to microglial damage via Ca(2+) signaling and mitochondrial disruption.

    Topics: Animals; Blotting, Western; Calcium; Capsaicin; Cell Death; Cell Line; Cytochromes c; Diterpenes; Enzyme Inhibitors; Humans; Immunohistochemistry; In Situ Nick-End Labeling; In Vitro Techniques; Microglia; Mitochondria; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Substantia Nigra; TRPV Cation Channels

2006
Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide.
    British journal of pharmacology, 2004, Volume: 141, Issue:7

    1. Peripheral cannabinoids have been shown to suppress nociceptive neurotransmission in a number of behavioral and neurophysiological studies. It is not known, however, whether cannabinoids exert this action through direct interactions with nociceptors in the periphery and/or if other processes are involved. To gain a better understanding of the direct actions of cannabinoid-vanilloid agonists on sensory neurons, we examined the effects of these compounds on trigeminal ganglion (TG) neurons in vitro. 2. AEA (EC(50)=11.0 microM), NADA (EC(50)=857 nM) and arachidonyl-2-chloroethylamide ACEA (EC(50)=14.0 microM) each evoked calcitonin gene-related peptide (CGRP) release from TG neurons. The TRPV1 antagonists iodo-resiniferatoxin (I-RTX) and capsazepine (CPZ) each obtunded AEA-, NADA-, ACEA- and capsaicin (CAP)-evoked CGRP release with individually equivalent IC(50)'s for each of the compounds (I-RTX IC(50) range=2.6-4.0 nM; CPZ IC(50) range=523-1140 microM). 3. The pro-inflammatory mediator prostaglandin E(2) significantly increased the maximal effect of AEA-evoked CGRP release without altering the EC(50). AEA, ACEA and CAP stimulated cAMP accumulation in TG neurons in a calcium- and TRPV1-dependent fashion. Moreover, the protein kinase inhibitor staurosporine significantly inhibited AEA- and CAP-evoked CGRP release. 4. The pungency of AEA, NADA, ACEA and CAP in the rat eye-wipe assay was also assessed. Interestingly, when applied intraocularly, NADA or CAP each produced nocifensive responses, while AEA or ACEA did not. 5. Finally, the potential inhibitory effects of these cannabinoids on TG nociceptors were evaluated. Neither AEA nor ACEA decreased CAP-evoked CGRP release. Furthermore, neither of the cannabinoid receptor type 1 antagonists SR141716A nor AM251 had any impact on either basal or CAP-evoked CGRP release. AEA also did not inhibit 50 mM K(+)-evoked CGRP release and did not influence bradykinin-stimulated inositol phosphate accumulation. 6. We conclude that the major action of AEA, NADA and ACEA on TG neurons is excitatory, while, of these, only NADA is pungent. These findings are discussed in relation to our current understanding of interactions between the cannabinoid and vanilloid systems and nociceptive processing in the periphery.

    Topics: Aminobutyrates; Animals; Arachidonic Acid; Arachidonic Acids; Calcitonin Gene-Related Peptide; Calcium Channels; Capsaicin; Dinoprostone; Diterpenes; Dopamine; Endocannabinoids; Ganglia, Spinal; Male; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Drug; Staurosporine; Trigeminal Ganglion; TRPC Cation Channels; TRPV Cation Channels

2004
Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of rats and TRPV1 mutant mice.
    Pain, 2004, Volume: 109, Issue:3

    Capsaicin antagonists including ruthenium red, capsazepine and iodo-resiniferatoxin (I-RTX) have recently been shown to inhibit the activation by noxious heat of the capsaicin receptor (TRPV1) expressed in non-neuronal host cells, and natively, in cultured dorsal root ganglion cells. Noxious heat has been shown to release immunoreactive calcitonin gene-related peptide (iCGRP) from the isolated rat skin. In this model, ruthenium red, I-RTX as well as capsazepine 10 microM caused no alteration in iCGRP release at 32 degrees C by themselves whereas capsazepine 100 microM doubled it reversibly. In wild-type mice 100 microM capsazepine also stimulated iCGRP release while it was without effect in TRPV1 knockout littermates. In the rat skin, both ruthenium red and capsazepine (10/100 microM) reduced and abolished, respectively, capsaicin-induced iCGRP release while I-RTX (1/10 microM) was ineffective. Only ruthenium red 100 microM showed an unspecific effect inhibiting iCGRP release induced by KCl. Ruthenium red and capsazepine (10/100 microM) caused no significant alteration of iCGRP release induced by heat stimulation at 47 degrees C. Employing 45 degrees C stimulation intensity, capsazepine and I-RTX (in the higher concentrations) showed a significant facilitatory effect on the heat response suggesting a partial agonistic action of the compounds. It is concluded that noxious heat-induced iCGRP release in the isolated rat skin occurs through a mechanism that is not inhibited by TRPV1 antagonism reflecting a different pharmacological profile of noxious heat transduction in terminals of sensory neurons compared to that in cultured cell bodies and TRPV1-transfected host cells.

    Topics: Animals; Calcitonin Gene-Related Peptide; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Drug Interactions; Hot Temperature; In Vitro Techniques; Male; Mice; Mice, Knockout; Nociceptors; Pain; Rats; Rats, Wistar; Receptors, Drug; Ruthenium Red; Sensory Receptor Cells; Signal Transduction; Skin

2004
Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, Apr-15, Volume: 23, Issue:8

    Growing evidence regarding the function of vanilloid receptor-1 (VR1) in the brain suggests potential central roles of this receptor, previously described to occur primarily in peripheral sensory neurons. In the present study, we used electrophysiological and biochemical techniques to investigate the function and the endogenous stimulation of VR1 in dopaminergic neurons of the substantia nigra pars compacta (SNc). The VR1 agonist capsaicin increased the frequency of both TTX-sensitive and -insensitive spontaneous EPSCs (sEPSCs) without affecting their amplitude, suggesting a presynaptic site of action. In contrast, no effect was detected with regard to GABAergic transmission. No increase in sEPSC frequency was observed in the presence of cadmium chloride, while the voltage-dependent calcium channel antagonist omega-conotoxin MVIIC did not prevent capsaicin action. The VR1 antagonists capsazepine and iodoresiniferatoxin (IRTX) blocked the effects of capsaicin. Importantly, IRTX per se reduced sEPSC frequency, suggesting a tonic activity of VR1. The endogenous VR1 agonist anandamide (AEA) produced an IRTX-sensitive increase in the frequency of sEPSCs on dopaminergic neurons that was more pronounced when protein kinase A had been activated. Furthermore, mass spectrometric analyses and binding experiments revealed high levels of endogenous AEA and specific binding of AEA to VR1 receptors in the SNc. These data suggest a tonic facilitation of glutamate release exerted by VR1 in the SNc through a stimulation of VR1 by endovanilloids, including anandamide. The increase in sEPSC frequency by VR1 onto midbrain dopaminergic neurons suggests the involvement of these receptors in motor and cognitive functions involving the dopaminergic system.

    Topics: Animals; Arachidonic Acids; Calcium; Calcium Channel Blockers; Capsaicin; Diterpenes; Dopamine; Dose-Response Relationship, Drug; Endocannabinoids; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; In Vitro Techniques; Mesencephalon; Neurons; Patch-Clamp Techniques; Polyunsaturated Alkamides; Presynaptic Terminals; Rats; Rats, Wistar; Receptors, Drug; RNA, Messenger; Substantia Nigra; Synapses; Synaptic Transmission; Tetrodotoxin

2003