iodoresiniferatoxin and arachidonyl-2-chloroethylamide

iodoresiniferatoxin has been researched along with arachidonyl-2-chloroethylamide* in 2 studies

Other Studies

2 other study(ies) available for iodoresiniferatoxin and arachidonyl-2-chloroethylamide

ArticleYear
Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide.
    British journal of pharmacology, 2004, Volume: 141, Issue:7

    1. Peripheral cannabinoids have been shown to suppress nociceptive neurotransmission in a number of behavioral and neurophysiological studies. It is not known, however, whether cannabinoids exert this action through direct interactions with nociceptors in the periphery and/or if other processes are involved. To gain a better understanding of the direct actions of cannabinoid-vanilloid agonists on sensory neurons, we examined the effects of these compounds on trigeminal ganglion (TG) neurons in vitro. 2. AEA (EC(50)=11.0 microM), NADA (EC(50)=857 nM) and arachidonyl-2-chloroethylamide ACEA (EC(50)=14.0 microM) each evoked calcitonin gene-related peptide (CGRP) release from TG neurons. The TRPV1 antagonists iodo-resiniferatoxin (I-RTX) and capsazepine (CPZ) each obtunded AEA-, NADA-, ACEA- and capsaicin (CAP)-evoked CGRP release with individually equivalent IC(50)'s for each of the compounds (I-RTX IC(50) range=2.6-4.0 nM; CPZ IC(50) range=523-1140 microM). 3. The pro-inflammatory mediator prostaglandin E(2) significantly increased the maximal effect of AEA-evoked CGRP release without altering the EC(50). AEA, ACEA and CAP stimulated cAMP accumulation in TG neurons in a calcium- and TRPV1-dependent fashion. Moreover, the protein kinase inhibitor staurosporine significantly inhibited AEA- and CAP-evoked CGRP release. 4. The pungency of AEA, NADA, ACEA and CAP in the rat eye-wipe assay was also assessed. Interestingly, when applied intraocularly, NADA or CAP each produced nocifensive responses, while AEA or ACEA did not. 5. Finally, the potential inhibitory effects of these cannabinoids on TG nociceptors were evaluated. Neither AEA nor ACEA decreased CAP-evoked CGRP release. Furthermore, neither of the cannabinoid receptor type 1 antagonists SR141716A nor AM251 had any impact on either basal or CAP-evoked CGRP release. AEA also did not inhibit 50 mM K(+)-evoked CGRP release and did not influence bradykinin-stimulated inositol phosphate accumulation. 6. We conclude that the major action of AEA, NADA and ACEA on TG neurons is excitatory, while, of these, only NADA is pungent. These findings are discussed in relation to our current understanding of interactions between the cannabinoid and vanilloid systems and nociceptive processing in the periphery.

    Topics: Aminobutyrates; Animals; Arachidonic Acid; Arachidonic Acids; Calcitonin Gene-Related Peptide; Calcium Channels; Capsaicin; Dinoprostone; Diterpenes; Dopamine; Endocannabinoids; Ganglia, Spinal; Male; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Drug; Staurosporine; Trigeminal Ganglion; TRPC Cation Channels; TRPV Cation Channels

2004
Activation of peripheral cannabinoid CB1 receptors inhibits mechanically evoked responses of spinal neurons in noninflamed rats and rats with hindpaw inflammation.
    The European journal of neuroscience, 2003, Volume: 18, Issue:8

    The presence of cannabinoid1 (CB1) receptors on primary afferent fibres may provide a novel target for cannabinoid analgesics. The present study investigated the ability of peripheral CB1 receptors to modulate innocuous and noxious transmission in noninflamed rats and rats with peripheral carrageenan inflammation. Effects of peripheral injection of arachidonyl-2-choroethylamide (ACEA; 10 and 30 micro g in 50 micro L), a selective CB1 receptor agonist, on mechanically evoked responses of dorsal horn neurons were studied in noninflamed rats and rats with peripheral carrageenan inflammation. Peripheral injection of ACEA (30 micro g in 50 micro L) significantly inhibited innocuous (12 g) mechanically evoked responses of spinal neurons in noninflamed (27 +/- 4% of control; P < 0.01) and inflamed (12 +/- 8% of control; P < 0.05) rats. Similarly, noxious (80 g) mechanically evoked responses of spinal neurons were inhibited by peripheral injection of ACEA (30 micro g in 50 micro L) in noninflamed rats (51 +/- 9% of control; P < 0.01) and rats with peripheral carrageenan inflammation (21 +/- 8% of control; P < 0.01). Inhibitory effects of ACEA were significantly greater in rats with peripheral carrageenan inflammation than in noninflamed rats (P < 0.05). Inhibitory effects of ACEA were significantly blocked by coadministration of the CB1 receptor antagonist SR141716A in both groups of rats. Peripheral injection of SR141716A alone did not alter mechanically evoked responses of spinal neurons in either group of rats. These data demonstrate that activation of peripheral CB1 receptors can inhibit innocuous and noxious somatosensory processing. Furthermore, following peripheral inflammation there is an enhanced inhibitory effect of a peripherally administered CB1 receptor agonist on both innocuous and noxious mechanically evoked responses of spinal neurons.

    Topics: Animals; Arachidonic Acids; Carrageenan; Diterpenes; Dose-Response Relationship, Drug; Drug Interactions; Evoked Potentials; Hindlimb; Inflammation; Male; Neural Inhibition; Physical Stimulation; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Drug; Rimonabant; Spinal Cord; Time Factors

2003