iodoresiniferatoxin and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

iodoresiniferatoxin has been researched along with 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline* in 1 studies

Other Studies

1 other study(ies) available for iodoresiniferatoxin and 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

ArticleYear
Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats.
    Pain, 2014, Volume: 155, Issue:4

    This study examined the differential mechanisms of mechanical allodynia and thermal hyperalgesia after injection of interleukin (IL) 1β into the orofacial area of male Sprague-Dawley rats. The subcutaneous administration of IL-1β produced both mechanical allodynia and thermal hyperalgesia. Although a pretreatment with iodoresiniferatoxin (IRTX), a transient receptor potential vanilloid 1 (TRPV1) antagonist, did not affect IL-1β-induced mechanical allodynia, it significantly abolished IL-1β-induced thermal hyperalgesia. On the other hand, a pretreatment with D-AP5, an N-methyl-d-aspartate (NMDA) receptor antagonist, and NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, blocked IL-1β-induced mechanical allodynia. Pretreatment with H89, a protein kinase A (PKA) inhibitor, blocked IL-1β-induced mechanical allodynia but not thermal hyperalgesia. In contrast, pretreatment with chelerythrine, a protein kinase C (PKC) inhibitor, inhibited IL-1β-induced thermal hyperalgesia. Subcutaneous injections of 2% lidocaine, a local anesthetic agent, blocked IL-1β-induced thermal hyperalgesia but not IL-1β-induced mechanical allodynia. In the resiniferatoxin (RTX)-pretreated rats, a subcutaneous injection of IL-1β did not produce thermal hyperalgesia due to the depletion of TRPV1 in the primary afferent fibers. Double immunofluorescence revealed the colocalization of PKA with neurofilament 200 (NF200) and of PKC with the calcitonin gene-related peptide (CGRP) in the trigeminal ganglion. Furthermore, NMDA receptor 1 (NR1) and TRPV1 predominantly colocalize with PKA and PKC, respectively, in the trigeminal ganglion. These results suggest that IL-1β-induced mechanical allodynia is mediated by sensitized peripheral NMDA/AMPA receptors through PKA-mediated signaling in the large-diameter primary afferent nerve fibers, whereas IL-1β-induced thermal hyperalgesia is mediated by sensitized peripheral TRPV1 receptors through PKC-mediated signaling in the small-diameter primary afferent nerve fibers.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Gene Expression Regulation; Hyperalgesia; Interleukin-1beta; Male; Nerve Tissue Proteins; Pain Threshold; Physical Stimulation; Quinoxalines; Rats; Rats, Sprague-Dawley; Trigeminal Ganglion

2014