interleukin-8 has been researched along with tulathromycin* in 3 studies
3 other study(ies) available for interleukin-8 and tulathromycin
Article | Year |
---|---|
Immuno-modulating properties of Tulathromycin in porcine monocyte-derived macrophages infected with porcine reproductive and respiratory syndrome virus.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus that grows in macrophages and causes acute pneumonia in pigs. PRRSV causes devastating losses to the porcine industry. However, due to its high antigenic variability and poorly understood immunopathogenesis, there is currently no effective vaccine or treatment to control PRRSV infection. The common occurrence of PRRSV infection with bacterial infections as well as its inflammatory-driven pathobiology raises the question of the value of antibiotics with immunomodulating properties for the treatment of the disease it causes. The macrolide antibiotic Tulathromycin (TUL) has been found to exhibit potent anti-inflammatory and immunomodulating properties in cattle and pigs. The aim of this study was to characterize the anti-viral and immunomodulating properties of TUL in PRRSV-infected porcine macrophages. Our findings indicate that blood monocyte-derived macrophages are readily infected by PRRSV and can be used as an effective cellular model to study PRRSV pathogenesis. TUL did not change intracellular or extracellular viral titers, not did it alter viral receptors (CD163 and CD169) expression on porcine macrophages. In contrast, TUL exhibited potent immunomodulating properties, which therefore occurred in the absence of any direct antiviral effects against PRRSV. TUL had an additive effect with PRRSV on the induction of macrophage apoptosis, and inhibited virus-induced necrosis. TUL significantly attenuated PRRSV-induced macrophage pro-inflammatory signaling (CXCL-8 and mitochondrial ROS production) and prevented PRRSV inhibition of non-opsonized and opsonized phagocytic function. Together, these data demonstrate that TUL inhibits PRRSV-induced inflammatory responses in porcine macrophages and protects against the phagocytic impairment caused by the virus. Research in live pigs is warranted to assess the potential clinical benefits of this antibiotic in the context of virally induced inflammation and tissue injury. Topics: Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Apoptosis; Cell Differentiation; Cell Line; Cell Shape; Disaccharides; Female; Heterocyclic Compounds; Immunologic Factors; Interleukin-10; Interleukin-8; Intracellular Space; Macrophages; Male; Mice; Mitochondria; Necrosis; Opsonin Proteins; Phagocytosis; Porcine Reproductive and Respiratory Syndrome; Porcine respiratory and reproductive syndrome virus; Reactive Oxygen Species; Receptors, Cell Surface; Receptors, Virus; Sialic Acid Binding Ig-like Lectin 1; Swine; Virus Replication | 2019 |
Direct and indirect anti-inflammatory effects of tulathromycin in bovine macrophages: inhibition of CXCL-8 secretion, induction of apoptosis, and promotion of efferocytosis.
Recent evidence indicates that immunomodulation by antibiotics may enhance their clinical efficacy. Specifically, drug-induced leukocyte apoptosis and macrophage efferocytosis have been shown to promote the resolution of inflammation in a variety of disease settings. Tulathromycin is a new macrolide antibiotic for the treatment of bovine respiratory disease. The direct antimicrobial effects of the drug alone do not fully justify its superior clinical efficacy, and we hypothesize that tulathromycin may have immunomodulating properties. We recently reported that tulathromycin promotes apoptosis and inhibits proinflammatory NF-κB signaling in bovine neutrophils. In this study, we investigated the direct and indirect anti-inflammatory effects of tulathromycin in bovine macrophages. The findings indicate that bovine monocyte-derived macrophages and alveolar macrophages readily phagocytose tulathromycin-induced apoptotic neutrophils both in vitro and in the airways of Mannheimia haemolytica-infected calves. Moreover, tulathromycin promotes delayed, concentration-dependent apoptosis, but not necrosis, in bovine macrophages in vitro. Activation of caspase-3 and detection of mono- and oligonucleosomes in bovine monocyte-derived macrophages treated with tulathromycin was observed 12 h posttreatment; pretreatment with a pan-caspase inhibitor (ZVAD) blocked the proapoptotic effects of the drug. Lastly, tulathromycin inhibited the secretion of proinflammatory CXCL-8 in lipopolysaccharide (LPS)-stimulated bovine macrophages; this effect was independent of caspase activation or programmed cell death. Taken together, these immunomodulating effects observed in bovine macrophages help further elucidate the mechanisms through which tulathromycin confers anti-inflammatory and proresolution benefits. Furthermore, these findings offer novel insights on how antibiotics may offer anti-inflammatory benefits by modulating macrophage-mediated events that play a key role in inflammation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Caspase 3; Cattle; Cells, Cultured; Cysteine Proteinase Inhibitors; Disaccharides; Gene Expression Regulation; Heterocyclic Compounds; Immunologic Factors; Inflammation; Interleukin-8; Lipopolysaccharides; Macrophages, Alveolar; Male; Mannheimia haemolytica; Neutrophils; Oligopeptides; Phagocytosis; Pneumonia of Calves, Enzootic; Signal Transduction | 2013 |
Anti-Inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription.
Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which tulathromycin confers anti-inflammatory benefits. Topics: Animals; Anti-Bacterial Agents; Anti-Inflammatory Agents; Apoptosis; Blotting, Western; Caspase 3; Cattle; Cell Line; Cells, Cultured; Disaccharides; DNA Fragmentation; Enzyme-Linked Immunosorbent Assay; Heterocyclic Compounds; In Situ Nick-End Labeling; Interleukin-8; Leukotriene B4; Male; Neutrophils; NF-kappa B; Polymerase Chain Reaction; Signal Transduction; Transcription, Genetic | 2011 |