interleukin-8 and sphingosine-kinase

interleukin-8 has been researched along with sphingosine-kinase* in 7 studies

Other Studies

7 other study(ies) available for interleukin-8 and sphingosine-kinase

ArticleYear
Sphingolipid pathway regulates innate immune responses at the fetomaternal interface during pregnancy.
    The Journal of biological chemistry, 2015, Jan-23, Volume: 290, Issue:4

    For a successful pregnancy, the mother's immune system has to tolerate the semiallogeneic fetus. A deleterious immune attack is avoided by orchestration of cellular, hormonal, and enzymatic factors. However, the precise mechanisms underlying fetomaternal tolerance are not yet completely understood. In this study, we demonstrate that sphingolipid metabolism constitutes a novel signaling pathway that is indispensable for fetomaternal tolerance by regulating innate immune responses at the fetomaternal interface. Perturbation of the sphingolipid pathway by disruption of the sphingosine kinase gene (Sphk) during pregnancy caused unusually high expression of neutrophil chemoattractants, CXCL1 and CXCL2, in the decidua, leading to a massive infiltration of neutrophils into the fetomaternal interface with enhanced oxidative damage, resulting in early fetal death. Sphk-deficient mice also exhibited neutrophilia in the peripheral blood, enhanced generation of granulocytes in the bone marrow, and a decrease in the number of decidual natural killer cells. The blockage of neutrophil influx protected Sphk-deficient mice against pregnancy loss. Notably, a similar result was obtained in human decidual cells, in which Sphk deficiency dramatically increased the secretion of CXCL1 and IL-8. In conclusion, our findings suggest that the sphingolipid metabolic pathway plays a critical role in fetomaternal tolerance by regulating innate immunity at the fetomaternal interface both in mice and humans, and it could provide novel insight into the development of therapeutic strategies to treat idiopathic pregnancy loss in humans.

    Topics: Abortion, Spontaneous; Animals; Chemokine CXCL1; Chemokines; Decidua; Enzyme-Linked Immunosorbent Assay; Female; Flow Cytometry; Humans; Immune Tolerance; Immunity, Innate; Interleukin-8; Lymphocyte Activation; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neutrophils; Phosphotransferases (Alcohol Group Acceptor); Placenta; Pregnancy; Pregnancy, Animal; Sphingolipids; T-Lymphocytes; Time Factors

2015
Pseudomonas-derived ceramidase induces production of inflammatory mediators from human keratinocytes via sphingosine-1-phosphate.
    PloS one, 2014, Volume: 9, Issue:2

    Ceramide is important for water retention and permeability barrier functions in the stratum corneum, and plays a key role in the pathogenesis of atopic dermatitis (AD). A Pseudomonas aeruginosa-derived neutral ceramidase (PaCDase) isolated from a patient with AD was shown to effectively degrade ceramide in the presence of Staphylococcus aureus-derived lipids or neutral detergents. However, the effect of ceramide metabolites on the functions of differentiating keratinocytes is poorly understood. We found that the ceramide metabolite sphingosine-1-phosphate (S1P) stimulated the production of inflammatory mediators such as TNF-α and IL-8 from three-dimensionally cultured human primary keratinocytes (termed "3D keratinocytes"), which form a stratum corneum. PaCDase alone did not affect TNF-α gene expression in 3D keratinocytes. In the presence of the detergent Triton X-100, which damages stratum corneum structure, PaCDase, but not heat-inactivated PaCDase or PaCDase-inactive mutant, induced the production of TNF-α, endothelin-1, and IL-8, indicating that this production was dependent on ceramidase activity. Among various ceramide metabolites, sphingosine and S1P enhanced the gene expression of TNF-α, endothelin-1, and IL-8. The PaCDase-enhanced expression of these genes was inhibited by a sphingosine kinase inhibitor and by an S1P receptor antagonist VPC 23019. The TNF-α-binding antibody infliximab suppressed the PaCDase-induced upregulation of IL-8, but not TNF-α, mRNA. PaCDase induced NF-κB p65 phosphorylation. The NF-κB inhibitor curcumin significantly inhibited PaCDase-induced expression of IL-8 and endothelin-1. VPC 23019 and infliximab inhibited PaCDase-induced NF-κB p65 phosphorylation and reduction in the protein level of the NF-κB inhibitor IκBα. Collectively, these findings suggest that (i) 3D keratinocytes produce S1P from sphingosine, which is produced through the hydrolysis of ceramide by PaCDase, (ii) S1P induces the production of TNF-α via S1P receptors, and (iii) released TNF-α stimulates the production of inflammatory mediators such as IL-8.

    Topics: Cells, Cultured; Endothelin-1; Humans; I-kappa B Proteins; Inflammation Mediators; Interleukin-8; Keratinocytes; Lysophospholipids; Neutral Ceramidase; NF-KappaB Inhibitor alpha; Phosphotransferases (Alcohol Group Acceptor); Pseudomonas; Receptors, Lysosphingolipid; Sphingosine; Transcription Factor RelA; Tumor Necrosis Factor-alpha

2014
Sphingosine kinase 1 is essential for proteinase-activated receptor-1 signalling in epithelial and endothelial cells.
    The international journal of biochemistry & cell biology, 2009, Volume: 41, Issue:7

    There is accumulating evidence that activation of sphingosine kinase 1 (SPHK1) is an important element in intracellular signalling cascades initiated by stimulation of multiple receptors, including certain growth factor, cytokine, and also G-protein coupled receptors. We here report that stimulation of the lung epithelial cell line A549 by thrombin leads to transient increase of SPHK1 activity and elevation of intracellular sphingosine-1-phosphate (S1P); abrogation of this stimulation by SPHK1-specific siRNA, pharmacological inhibition, or expression of a dominant-negative SPHK1 mutant blocks the response to thrombin, as measured by secretion of MCP-1, IL-6, IL-8, and PGE(2). Using selective stimulation of proteinase-activated receptors (PARs) a specific involvement of SPHK1 in the PAR-1 induced responses in A549 cell, including activation of NFkappaB, was evident, while PAR-2 and PAR-4 responses were independent of SPHK1. Moreover, PAR-1 or thrombin-induced cytokine production and adhesion factor expression of human umbilical vein endothelial cells was also seen to depend on SPHK1. Using dermal microvascular endothelial cells from SPHK1-deficient mice, we showed that absence of the enzyme abrogates MCP-1 production induced in these cells upon treatment with thrombin or PAR-1 activating peptide. We propose SPHK1 inhibition as a novel way to block PAR-1 mediated signalling, which could be useful in treatment of a number of diseases, in particular in atherosclerosis.

    Topics: Animals; Cell Line, Tumor; Chemokine CCL2; Cyclooxygenase 2; Dinoprostone; Endothelial Cells; Enzyme Activation; Epithelial Cells; Gene Expression Regulation; Gene Silencing; Humans; Intercellular Adhesion Molecule-1; Interleukin-6; Interleukin-8; Mice; NF-kappa B; Phosphotransferases (Alcohol Group Acceptor); Receptor, PAR-1; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Thiazoles; Thrombin

2009
Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion.
    Cancer research, 2008, Aug-15, Volume: 68, Issue:16

    Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are lysophospholipid mediators of diverse cellular processes important for cancer progression. S1P is produced by two sphingosine kinases, SphK1 and SphK2. Expression of SphK1 is elevated in many cancers. Here, we report that LPA markedly enhanced SphK1 mRNA and protein in gastric cancer MKN1 cells but had no effect on SphK2. LPA also up-regulated SphK1 expression in other human cancer cells that endogenously express the LPA(1) receptor, such as DLD1 colon cancer cells and MDA-MB-231 breast cancer cells, but not in HT29 colon cancer cells or MDA-MB-453 breast cancer cells, which do not express the LPA(1) receptor. An LPA(1) receptor antagonist or down-regulation of its expression prevented SphK1 and S1P(3) receptor up-regulation by LPA. LPA transactivated the epidermal growth factor receptor (EGFR) in these cells, and the EGFR inhibitor AG1478 attenuated the increased SphK1 and S1P(3) expression induced by LPA. Moreover, down-regulation of SphK1 attenuated LPA-stimulated migration and invasion of MNK1 cells yet had no effect on expression of neovascularizing factors, such as interleukin (IL)-8, IL-6, urokinase-type plasminogen activator (uPA), or uPA receptor induced by LPA. Finally, down-regulation of S1P(3), but not S1P(1), also reduced LPA-stimulated migration and invasion of MKN1 cells. Collectively, our results suggest that SphK1 is a convergence point of multiple cell surface receptors for three different ligands, LPA, EGF, and S1P, which have all been implicated in regulation of motility and invasiveness of cancer cells.

    Topics: Blotting, Western; Breast Neoplasms; Cell Movement; Cell Proliferation; Chemotaxis; Colonic Neoplasms; ErbB Receptors; Humans; Interleukin-6; Interleukin-8; Lysophospholipids; Neoplasm Invasiveness; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysophosphatidic Acid; Receptors, Lysosphingolipid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sphingosine; Stomach Neoplasms; Transcriptional Activation; Tumor Cells, Cultured; Up-Regulation; Urokinase-Type Plasminogen Activator

2008
Heparan sulfate proteoglycans are involved in opiate receptor-mediated cell migration.
    Biochemistry, 2004, Jan-13, Volume: 43, Issue:1

    Opioid receptors are expressed in cells of the immune system, and potent immunomodulatory effects of their natural and synthetic ligands have been reported. In some studies, the opiate receptor antagonist naloxone itself displayed immunomodulatory actions. We investigated effects of naloxone on leukocyte chemotaxis. Cell migration was tested in micropore filter assays using modified Boyden chambers, and receptor expression was investigated using radiolabel binding assays. Naloxone induced peripheral blood nonadherent mononuclear cell and neutrophil chemotaxis at nanomolar concentrations and deactivated their migration toward beta-endorphin, angiotensin II, somatostatin, or interleukin-8 but not toward RANTES, vasoactive intestinal peptide, or substance P. Ligand binding studies showed no alteration in the binding of interleukin-8 to neutrophils by naloxone. Cleavage of heparan sulfate from proteoglycans on the cells' surface completely inhibited chemotactic and deactivating properties of naloxone but not other attractants. Chemotactic properties were abolished by pretreating cells with heparinase, chondroitinase, sodium chlorate, and anti-syndecan-4 antibodies, indicating the involvement of syndecan-4. The extent of migration toward naloxone was diminished by pretreatment with dimethylsphingosine, a specific sphingosine kinase inhibitor. As syndecan-4 signaling in leukocyte chemotaxis involves activation of sphingosine kinase, results indicate that naloxone interacts with syndecan-4 function in cell migration and suggest a role for heparan sulfate proteoglycans as coreceptors to members of the delta-opiate receptor family.

    Topics: Antibodies, Monoclonal; Cell Migration Inhibition; Cell Separation; Chemotaxis, Leukocyte; Chlorates; Chondroitinases and Chondroitin Lyases; Heparan Sulfate Proteoglycans; Heparin Lyase; Humans; Interleukin-8; Lymphocytes; Membrane Glycoproteins; Naloxone; Neutrophils; Phosphotransferases (Alcohol Group Acceptor); Protein Binding; Proteoglycans; Receptors, Opioid; Sphingosine; Syndecan-4

2004
Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production, and chemotaxis.
    Journal of immunology (Baltimore, Md. : 1950), 2004, Aug-01, Volume: 173, Issue:3

    The anaphylatoxin C5a is produced following the activation of the complement system and is associated with a variety of pathologies, including septic shock and adult respiratory distress syndrome, and with immune complex-dependent diseases such as rheumatoid arthritis. C5a has been shown to regulate inflammatory functions by interacting with its receptor, C5aR, which belong to the rhodopsin family of seven-transmembrane GPCRs. However, the intracellular signaling pathways triggered by C5aR on immune-effector cells are not well understood. In this report we present data showing that, in human monocyte-derived macrophages, C5aR uses the intracellular signaling molecule sphingosine kinase (SPHK)1 to trigger various physiological responses. Our data show that C5a rapidly stimulates the generation of sphingosine-1-phosphate, SPHK activity, and membrane translocation of SPHK1. Using an antisense oligonucleotide against SPHK1, we show that knockdown of SPHK1 abolishes the C5a-triggered intracellular Ca(2+) signals, degranulation, cytokine generation, and chemotaxis. Our study shows for the first time that SPHK1 not only plays a key role in the generation and release of proinflammatory mediators triggered by anaphylatoxins from human macrophages but is also involved in the process of immune cell motility, thus pointing out SPHK1 as a potential therapeutic target for the treatment of inflammatory and autoimmune diseases.

    Topics: beta-N-Acetylhexosaminidases; Calcium Signaling; Cells, Cultured; Chemotaxis; Complement C5a; Cytokines; Cytoplasmic Granules; Humans; Interleukin-6; Interleukin-8; Lysophospholipids; Macrophages; Oligodeoxyribonucleotides, Antisense; Phosphotransferases (Alcohol Group Acceptor); Protein Kinase C; Receptor, Anaphylatoxin C5a; Signal Transduction; Sphingosine; Tumor Necrosis Factor-alpha; Type C Phospholipases

2004
Sphingosine kinase-dependent directional migration of leukocytes in response to phorbol ester.
    Biochemical and biophysical research communications, 2002, Oct-04, Volume: 297, Issue:4

    Syndecan-4 participates in focal adhesion by non-G protein-dependent activation of protein kinase C. Ligation of syndecan-4 with antithrombin elicits pertussis toxin-sensitive chemotaxis of leukocytes. As activation of protein kinase C stimulates release of sphingosine-1-phosphate, a chemoattracting G protein-coupled receptor agonist, we studied directional migration of leukocytes in response to phorbol myristate acetate (PMA), a direct activator of protein kinase C. Human peripheral blood neutrophils, monocytes, and lymphocytes were purified and tested for chemotactic migration in micropore filter assays in response to PMA. Dose-dependent stimulation of migration was seen only when leukocytes were exposed to concentration gradients of PMA; in the absence of such a gradient, inhibition of random migration was induced. Dimethylsphingosine inhibited PMA-induced leukocyte chemotaxis, indicating that activation of sphingosine kinase for enhanced production of sphingosine-1-phosphate mediates the chemotactic response to PMA. Pertussis toxin abrogated the chemotactic response to PMA, suggesting involvement of G protein-coupled sphingosine-1-phosphate receptor. Dimethylsphingosine also inhibited leukocyte chemotaxis toward antithrombin, indicating that similar mechanisms may be involved upon syndecan-4 ligation. Data show that protein kinase C-dependent activation of sphingosine kinase may play a central role in leukocyte chemotaxis toward non-G protein-coupled receptor agonists.

    Topics: Chemokine CCL5; Chemotaxis, Leukocyte; Humans; Interleukin-8; Kinetics; Leukocytes; Leukocytes, Mononuclear; Lymphocytes; Phosphotransferases (Alcohol Group Acceptor); Tetradecanoylphorbol Acetate

2002