interleukin-8 and safrole-oxide

interleukin-8 has been researched along with safrole-oxide* in 3 studies

Other Studies

3 other study(ies) available for interleukin-8 and safrole-oxide

ArticleYear
Finding ATF4/p75NTR/IL-8 signal pathway in endothelial-mesenchymal transition by safrole oxide.
    PloS one, 2014, Volume: 9, Issue:6

    Targeting the endothelial-to-mesenchymal transition (EndoMT) may be a novel therapeutic strategy for cancer and various diseases induced by fibrosis. We aimed to identify a small chemical molecule as an inducer of EndoMT and find a new signal pathway by using the inducer. Safrole oxide (SFO), 50 µg/ml, could most effectively induce EndoMT within 12 h. To understand the underlying molecular mechanism, we performed microarray, quantitative real-time PCR and western blot analysis to find key factors involved in SFO-induced EndoMT and demonstrated the involvement of the factors by RNAi. The expression of activating transcription factor 4 (ATF4), p75 neurotrophin receptor (p75NTR), and interleukin 8 (IL-8) was greatly increased in SFO-induced EndoMT. Knockdown of ATF4 inhibited the SFO-induced EndoMT completely, and knockdown of p75NTR or IL-8 partially inhibited the EndoMT, which suggests that all three factors were involved in the process. Furthermore, knockdown of p75NTR inhibited the SFO-increased IL-8 expression and secretion, and knockdown of ATF4 inhibited SFO-increased p75NTR level significantly. The ATF4/p75NTR/IL-8 signal pathway may have an important role in EndoMT induced by SFO. Our findings support potential novel targets for the therapeutics of cancer and fibrosis disease.

    Topics: Activating Transcription Factor 4; Fibrosis; Gene Expression Regulation; Gene Knockdown Techniques; Human Umbilical Vein Endothelial Cells; Humans; Interleukin-8; Neoplasms; Nerve Tissue Proteins; Receptors, Nerve Growth Factor; Safrole; Signal Transduction

2014
Safrole-2',3'-oxide induces atherosclerotic plaque vulnerability in apolipoprotein E-knockout mice.
    Toxicology letters, 2013, Feb-27, Volume: 217, Issue:2

    Safrole-2',3'-oxide (SFO) is the major electrophilic metabolite of safrole (4-allyl-1, 2-methylenedioxybenzene), a natural plant constituent found in essential oils of numerous edible herbs and spices and in food containing these herbs, such as pesto sauce, cola beverages and bologna sausages. The effects of SFO in mammalian systems, especially the cardiovascular system, are little known. Disruption of vulnerable atherosclerotic plaques in atherosclerosis, a chronic inflammatory disease, is the main cause of cardiovascular events. In this study, we investigated SFO-induced atherosclerotic plaque vulnerability (possibility of rupture) in apolipoprotein E-knockout (apoE(-/-)) mice. Lipid area in vessel wall reached 59.8% in high dose SFO (SFO-HD) treated group, which is only 31.2% in control group. SFO treatment changed the lesion composition to an unstable phenotype, increased the number of apoptotic cells in plaque and the endothelium in plaques was damaged after SFO treatment. Furthermore, compared with control groups, the plaque endothelium level of p75(NTR) was 3-fold increased and the liver level of p75(NTR) was 17.4-fold increased by SFO-HD. Meanwhile, the serum level of KC (a functional homolog of IL-8 and the main proinflammatory alpha chemokine in mice) in apoE(-/-) mice was up to 357pg/ml in SFO-HD treated group. Thus, SFO contributes to the instability of atherosclerotic plaque in apoE(-/-) mice through activating p75(NTR) and IL-8 and cell apoptosis in plaque.

    Topics: Animals; Apolipoproteins E; Apoptosis; Cholesterol; Endothelium, Vascular; Histocytochemistry; Interleukin-8; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Plaque, Atherosclerotic; Receptors, Nerve Growth Factor; Safrole; Triglycerides

2013
Safrole oxide induces human umbilical vein endothelial cell transdifferentiation to 5-hydroxytryptaminergic neuron-like cells through tropomyosin receptor kinase A/cyclooxygenase 2/nuclear factor-kappa B/interleukin 8 signaling.
    The international journal of biochemistry & cell biology, 2011, Volume: 43, Issue:10

    The phenomenon of endothelial-neural transdifferentiation has been observed for a long time, but the mechanism is not clear. We previously found that safrole oxide induced human umbilical vein endothelial cell transdifferentiation into neuron-like cells. In this study, we first validated that these cells induced by safrole oxide were functional 5-hydroxytryptaminergic neuron-like cells. Then, we performed microarray analysis of safrole oxide-treated and -untreated human umbilical vein endothelial cells. Safrole oxide elevated the levels of cyclooxygenase 2 (COX-2), interleukin-8 (IL-8) and reactive oxygen species (ROS), which was accompanied by nuclear factor-kappa B (NF-κB) nuclear translocation during the transdifferentiation. Blockade of tropomyosin receptor kinase A (TrkA) by an inhibitor or short hairpin RNA inhibited the levels of COX-2/IL-8 and the nuclear translocation of NF-κB but did not suppress the increased ROS level. As a result, cells underwent apoptosis. Therefore, via TrkA, safrole oxide may induce endothelial cell transdifferentiation into functional neuron-like cells. During this process, the increased levels of COX-2/IL-8 and the subsequent elevation of ROS production induced NF-κB nuclear translocation and IL-8 secretion. With the activity of TrkA inhibited, the inactive NF-κB regulated the ROS level in a negative feedback manner. Finally, the transdifferentiation pathway was blocked and cells became apoptotic. The TrkA/COX-2/IL-8 signal pathway may have an important role in endothelial-neural transdifferentiation, and safrole oxide may trigger this process by activating TrkA.

    Topics: Apoptosis; Calcium; Cell Survival; Cell Transdifferentiation; Cyclooxygenase 2; Endothelial Cells; Gene Expression Profiling; Human Umbilical Vein Endothelial Cells; Humans; Interleukin-8; Metabolic Networks and Pathways; Neurons; NF-kappa B; Protein Kinases; Reactive Oxygen Species; Safrole; Serotonin; Tropomyosin; Umbilical Veins

2011