interleukin-8 has been researched along with lumacaftor* in 2 studies
2 other study(ies) available for interleukin-8 and lumacaftor
Article | Year |
---|---|
Vx-809/Vx-770 treatment reduces inflammatory response to Pseudomonas aeruginosa in primary differentiated cystic fibrosis bronchial epithelial cells.
Cystic fibrosis patients exhibit chronic Pseudomonas aeruginosa respiratory infections and sustained proinflammatory state favoring lung tissue damage and remodeling, ultimately leading to respiratory failure. Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function is associated with MAPK hyperactivation and increased cytokines expression, such as interleukin-8 [chemoattractant chemokine (C-X-C motif) ligand 8 (CXCL8)]. Recently, new therapeutic strategies directly targeting the basic CFTR defect have been developed, and ORKAMBI (Vx-809/Vx-770 combination) is the only Food and Drug Administration-approved treatment for CF patients homozygous for the F508del mutation. Here we aimed to determine the effect of the Vx-809/Vx-770 combination on the induction of the inflammatory response by fully differentiated primary bronchial epithelial cell cultures from CF patients carrying F508del mutations, following exposure to P. aeruginosa exoproducts. Our data unveiled that CFTR functional rescue with Vx-809/Vx-770 drastically reduces CXCL8 (as well as CXCL1 and CXCL2) transcripts and p38 MAPK phosphorylation in response to P. aeruginosa exposure through a CFTR-dependent mechanism. These results suggest that ORKAMBI has anti-inflammatory properties that could decrease lung inflammation and contribute to the observed beneficial impact of this treatment in CF patients. Topics: Aminophenols; Aminopyridines; Benzodioxoles; Bronchi; Cells, Cultured; Chloride Channel Agonists; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Humans; Interleukin-8; Mutation; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones | 2018 |
CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury.
The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. Topics: Aminopyridines; Animals; Benzodioxoles; Cell Line; Curcumin; Cyclooxygenase 2; Cystic Fibrosis Transmembrane Conductance Regulator; Dinoprostone; Enzyme-Linked Immunosorbent Assay; Extracellular Signal-Regulated MAP Kinases; Hot Temperature; Inflammation; Inhalation; Interleukin-8; JNK Mitogen-Activated Protein Kinases; Lung Diseases; Male; Microscopy, Fluorescence; Mitogen-Activated Protein Kinases; NF-kappa B; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; RNA Interference; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Up-Regulation | 2015 |