interleukin-8 has been researched along with isoeugenol* in 3 studies
3 other study(ies) available for interleukin-8 and isoeugenol
Article | Year |
---|---|
Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin.
We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release. Topics: Allergens; Cell Line; Cytokines; Dinitrochlorobenzene; Eugenol; Gene Expression Regulation; Humans; Interleukin-8; Monocytes; RNA Stability; RNA, Messenger; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Tristetraprolin | 2012 |
Studies of cell signaling in a reconstructed human epidermis exposed to sensitizers: IL-8 synthesis and release depend on EGFR activation.
Models of reconstructed human epidermis (RHE) holding proliferating and fully differentiated cultured keratinocytes allow in vitro investigation of early molecular and cellular epidermal events during the complex response of keratinocytes at the onset of allergic contact dermatitis (ACD) or sensitization. In this study, data collected on RHE exposed to well-characterized sensitizing chemicals, such as dinitrofluorobenzene, oxazolone, cinnamaldehyde and isoeugenol, revealed a transient expression of IL-8 mRNA in association with abundant IL-8 cell release. Investigations of keratinocyte signaling illustrate transient activation by tissue exposure to sensitizing chemicals of the epidermal growth factor receptor (EGFR). This activation of EGFR tyrosine kinase is involved in the expression and release of IL-8. The IL-8 release appears also to be partially dependent on p38 and ERK 1/2 MAPK activation. Moreover, data suggest that heparin-binding EGF-like growth factor (HB-EGF) expression and release induced after exposure of RHE to sensitizing chemicals are also under the control of EGFR tyrosine kinase activity, independently of the IL-8 expression and release. Mechanistic approach of keratinocyte responses in the context of RHE underlying regulation of expression and release of epidermal cytokines and growth factors after topical application of sensitizing chemicals is proposed to identify biomarkers which could then be analysed for in vitro toxicological screening of new or undefined compounds. Topics: Acrolein; Biomarkers; Cells, Cultured; Dinitrofluorobenzene; Epidermis; ErbB Receptors; Eugenol; Extracellular Signal-Regulated MAP Kinases; Heparin-binding EGF-like Growth Factor; Humans; Intercellular Signaling Peptides and Proteins; Interleukin-1alpha; Interleukin-8; Keratinocytes; MAP Kinase Signaling System; Oxazolone; p38 Mitogen-Activated Protein Kinases; RNA, Messenger | 2012 |
IL-8 release from human neutrophils cultured with pro-haptenic chemical sensitizers.
Cytokine release from dendritic cells in vitro is a useful marker to discriminate between sensitizing and irritant haptenic chemicals. Unfortunately, pro-haptens, which gain reactivity following metabolic/auto activation, yield negative results. To overcome this, we exposed human neutrophils and THP-1 cells to haptens/pro-haptens and measured IL-8 release. Haptenic compounds stimulated IL-8 release in neutrophils and THP-1 cells. In contrast, the pro-haptens eugenol, isoeugenol, and 2-aminophenol stimulated high levels of IL-8 release from neutrophils alone. Neutrophil cytokine release was reduced when glutathione was added. Cyp1A1/1B1/3A4 were not detectable in THP-1 cells or neutrophils; however, neutrophils expressed high levels of myeloperoxidase. Topics: Aminophenols; Cell Line; Cells, Cultured; Eugenol; Haptens; Humans; Interleukin-8; Neutrophils | 2012 |