interleukin-8 and hydroxymatairesinol

interleukin-8 has been researched along with hydroxymatairesinol* in 2 studies

Other Studies

2 other study(ies) available for interleukin-8 and hydroxymatairesinol

ArticleYear
Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
    The Journal of nutrition, 2012, Volume: 142, Issue:10

    Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2 cell model. Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, PINO, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, PINO, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. PINO was the most efficiently conjugated (75% of total in cells). In inflamed cells, PINO significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, PINO exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism.

    Topics: 4-Butyrolactone; Anti-Inflammatory Agents; Butylene Glycols; Caco-2 Cells; Cell Differentiation; Chemokine CCL2; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Furans; Glucosides; Humans; Interleukin-1beta; Interleukin-6; Interleukin-8; Intestines; Lignans; NF-kappa B; Plant Extracts; Signal Transduction

2012
Immunomodulatory activity of the lignan 7-hydroxymatairesinol potassium acetate (HMR/lignan) extracted from the heartwood of Norway spruce (Picea abies).
    International immunopharmacology, 2010, Volume: 10, Issue:3

    The pharmacological profile of the lignan 7-hydroxymatairesinol (HMR/lignan, HMR) includes chemopreventive effects, antioxidant properties, and mild proestrogenic activity. The present study was devised to investigate the effects of HMR on THP-1 cells, an established model of human monocytes, and on human polymorphonuclear leukocytes (PMNs). In THP-1 cells, HMR concentration-dependently reduced LPS-stimulated tumor necrosis factor (TNF)-alpha secretion in the supernatant. HMR at low, sub-muM concentrations also reduced TNF-alpha mRNA, which was however enhanced by supra-muM concentrations of HMR. In human PMNs, HMR concentration-dependently reduced ROS production induced by either N-formyl-Met-Leu-Phe, phorbol myristate acetate or angiotensin II, as well as interleukin-8 production induced by either N-formyl-Met-Leu-Phe or angiotensin II. Results indicate that HMR is an effective inhibitor of both monocytic THP-1 cells and of human PMNs and warrant further studies to assess their relevance for the prevention and treatment of several conditions characterized by chronic systemic inflammation.

    Topics: Angiotensin II; Cell Line, Tumor; Humans; Immunologic Factors; In Vitro Techniques; Interleukin-8; Lignans; Monocytes; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Picea; Plant Extracts; Reactive Oxygen Species; Respiratory Burst; Reverse Transcriptase Polymerase Chain Reaction; RNA; Tumor Necrosis Factor-alpha; Wood

2010