interleukin-8 and ginkgetin

interleukin-8 has been researched along with ginkgetin* in 2 studies

Other Studies

2 other study(ies) available for interleukin-8 and ginkgetin

ArticleYear
Ginkgetin exerts anti-inflammatory effects on cerebral ischemia/reperfusion-induced injury in a rat model via the TLR4/NF-κB signaling pathway.
    Bioscience, biotechnology, and biochemistry, 2019, Volume: 83, Issue:4

    Ginkgo biloba, a natural biflavonoid isolated from Ginkgo biloba leaves, is reported to have strong anti-inflammatory and immunosuppressive properties. The aim of this study is to investigate the potential anti-inflammatory mechanisms of ginkgo flavonoids on cerebral ischemia/reperfusion (I/R) injury. Inflammatory-associated cytokines in cerebral ischemic hemispheres were determined by immunohistochemical staining, Western blot and enzyme-like immunosorbent assay (ELISA). Our results indicated that treatment with Ginkgetin significantly restored rat brain I/R-induced neurological deficit scores. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in Ginkgetin treatment group (100 mg/kg) also significantly reduced. The expression inflammation-related protein prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interleukin-8 (IL-8) was also decreased in Ginkgetin treatment group. However, the expression of interleukin-10 (IL-10) was remarkably increased. Thus, this study demonstrates that Ginkgetin protects neurons from I/R-induced rat injury by down-regulating pro-inflammatory cytokines and blocking the TLR4/NF-κB pathway.

    Topics: Animals; Anti-Inflammatory Agents; Biflavonoids; Brain Ischemia; Cyclooxygenase 2; Dinoprostone; Disease Models, Animal; Drug Administration Schedule; Gene Expression Regulation; Ginkgo biloba; Interleukin-10; Interleukin-1beta; Interleukin-6; Interleukin-8; Male; Neuroprotective Agents; NF-kappa B; Nitric Oxide Synthase Type II; Plant Extracts; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha

2019
Ginkgetin inhibits proliferation of HeLa cells via activation of p38/NF-κB pathway.
    Cellular and molecular biology (Noisy-le-Grand, France), 2019, Apr-30, Volume: 65, Issue:4

    Effect of ginkgetin on proliferation of human cervical cancer (HeLa) cells and the underlying mechanism   were investigated. Human cervical cancer (HeLa) cells were cultured at 37 °C in 10 % fetal bovine serum (FBS) supplemented RPMI 1640 medium in a humidified incubator containing 5 % CO2. Cell proliferation was determined using MTT assay, while real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to determine the levels of expression of interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin 8 (IL-8). The expressions of p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κB) were determined using Western blotting. Treatment of HeLa cells with ginkgetin significantly and time- and dose-dependently inhibited their proliferation (p < 0.05). The invasion of the cells were also significantly and dose-dependently decreased, when compared with control cells (p < 0.05). The expressions of p-p38 and p-NF-κB were significantly and dose-dependently down-regulated, relative to control group (p < 0.05). However, the expressions of p38 and NF-κB in ginkgetin-treated cells were not significantly different from those of control group (p > 0.05). The results of qRT-PCR and ELISA showed that the levels of expression of TNF-α, IL-1β and IL-8 mRNAs were significantly and dose-dependently reduced in HeLa cells after 48 h of treatment with ginkgetin, when compared with the control group (p < 0.05). The anti-proliferative effect of ginkgetin on HeLa cells is exerted via a mechanism involving the p38/NF-κB pathway.

    Topics: Biflavonoids; Cell Proliferation; Gene Expression Regulation, Neoplastic; HeLa Cells; Humans; Interleukin-1beta; Interleukin-8; Neoplasm Invasiveness; NF-kappa B; p38 Mitogen-Activated Protein Kinases; RNA, Messenger; Signal Transduction; Tumor Necrosis Factor-alpha

2019