interleukin-8 has been researched along with farnesyl-pyrophosphate* in 3 studies
3 other study(ies) available for interleukin-8 and farnesyl-pyrophosphate
Article | Year |
---|---|
Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer.
Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood.. Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis.. The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001).. Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings. Topics: Apoptosis; Atorvastatin; Cell Line, Tumor; Cell Survival; Drug Resistance, Neoplasm; Female; Gene Expression; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Interleukin-6; Interleukin-8; Mevalonic Acid; Ovarian Neoplasms; Polyisoprenyl Phosphates; Prenylation; Rosuvastatin Calcium; Sesquiterpenes; Simvastatin; Transforming Growth Factor beta1; Vascular Endothelial Growth Factor A; Zoledronic Acid | 2020 |
Inhibition of Rho and Rac geranylgeranylation by atorvastatin is critical for preservation of endothelial junction integrity.
Small GTPases (guanosine triphosphate, GTP) are involved in many critical cellular processes, including inflammation, proliferation, and migration. GTP loading and isoprenylation are two important post-translational modifications of small GTPases, and are critical for their normal function. In this study, we investigated the role of post-translational modifications of small GTPases in regulating endothelial cell inflammatory responses and junctional integrity.. Confluent human umbilical vein endothelial cell (HUVECs ) treated with atorvastatin demonstrated significantly decreased lipopolysaccharide (LPS)-mediated IL-6 and IL-8 generation. The inhibitory effect of atorvastatin (Atorva) was attenuated by co-treatment with 100 µM mevalonate (MVA) or 10 µM geranylgeranyl pyrophosphate (GGPP), but not by 10 µM farnesyl pyrophosphate (FPP). Atorvastatin treatment of HUVECs produced a time-dependent increase in GTP loading of all Rho GTPases, and induced the translocation of small Rho GTPases from the cellular membrane to the cytosol, which was reversed by 100 µM MVA and 10 µM GGPP, but not by 10 µM FPP. Atorvastatin significantly attenuated thrombin-induced HUVECs permeability, increased VE-cadherin targeting to cell junctions, and preserved junction integrity. These effects were partially reversed by GGPP but not by FPP, indicating that geranylgeranylation of small GTPases plays a major role in regulating endothelial junction integrity. Silencing of small GTPases showed that Rho and Rac, but not Cdc42, play central role in HUVECs junction integrity.. In conclusion, our studies show that post-translational modification of small GTPases plays a vital role in regulating endothelial inflammatory response and endothelial junction integrity. Atorvastatin increased GTP loading and inhibited isoprenylation of small GTPases, accompanied by reduced inflammatory response and preserved cellular junction integrity. Topics: Antigens, CD; Atorvastatin; Cadherins; cdc42 GTP-Binding Protein; Guanosine Triphosphate; Heptanoic Acids; Human Umbilical Vein Endothelial Cells; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Intercellular Junctions; Interleukin-6; Interleukin-8; Lipopolysaccharides; Mevalonic Acid; Polyisoprenyl Phosphates; Prenylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-akt; Pyrroles; rho-Associated Kinases; Sesquiterpenes; Thrombin | 2013 |
Simvastatin decreases IL-6 and IL-8 production in epithelial cells.
Many cardiovascular studies have suggested that 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibitors (statins) have anti-inflammatory effects independent of cholesterol lowering. As a chronic inflammatory disease, periodontitis shares some mechanisms with atherosclerosis. Since oral epithelial cells participate importantly in periodontal inflammation, we measured simvastatin effects on interleukin-6 and interleukin-8 production by cultured human epithelial cell line (KB cells) in response to interleukin-1alpha. Simvastatin decreased production, an effect reversed by adding mevalonate or geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate. Simvastatin was found to reduce NF-kappaB and AP-1 promoter activity in KB cells. Dominant-negative Rac1 severely inhibited interleukin-1alpha-induced NF-kappaB and AP-1 promoter activity. Our results may indicate an anti-inflammatory effect of simvastatin on human oral epithelial cells, apparently involving Rac1 GTPase inhibition. Topics: Anti-Inflammatory Agents; Epithelial Cells; Gingiva; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypolipidemic Agents; Interleukin-1; Interleukin-6; Interleukin-8; KB Cells; Mevalonic Acid; NF-kappa B; Polyisoprenyl Phosphates; rho GTP-Binding Proteins; Sesquiterpenes; Simvastatin; Transcription Factor AP-1 | 2006 |