interleukin-8 and endomorphin-2

interleukin-8 has been researched along with endomorphin-2* in 2 studies

Other Studies

2 other study(ies) available for interleukin-8 and endomorphin-2

ArticleYear
Antiinflammatory role of endomorphins in osteoarthritis, rheumatoid arthritis, and adjuvant-induced polyarthritis.
    Arthritis and rheumatism, 2008, Volume: 58, Issue:2

    Pain sensitization and the related secretion of neuropeptides from sensory nerve terminals are proinflammatory in osteoarthritis (OA), rheumatoid arthritis (RA), and adjuvant-induced polyarthritis. In contrast, endogenous opioids such as the recently discovered endomorphins (EMs) are antiinflammatory. However, the role of endogenous EMs such as EM-1 and EM-2 has never been investigated in OA and RA.. We established a highly sensitive radioimmunoassay to detect EM-1 and EM-2. In patients with RA and patients with OA, immunohistochemistry for EM-1 and EM-2 was performed, and double-staining was used to identify EM-positive cells. The effects of EM-1 and EM-2 on the secretion of interleukin-6 (IL-6) and IL-8 from human synovial tissue were studied by tissue superfusion, and the therapeutic effects of EM-1 were tested in a rat model of adjuvant-induced polyarthritis.. EM-positive cells were located in the sublining area and vessel walls but were particularly evident in the highly inflamed lining area. Human macrophages, T cells, and fibroblasts stained positive for EMs. The synovial density of EM-positive cells was higher in patients with OA than in those with RA. EM-1 inhibited synovial secretion of IL-6 in patients with RA and secretion of IL-8 in patients with RA and those with OA (maximum 10(-10)M). EM-2 inhibited IL-8 secretion only from RA tissue (maximum 10(-10)M). In rats with adjuvant-induced polyarthritis, thymus, spleen, and synovial tissue contained significantly more EM-1 than was observed in controls. Rats with adjuvant-induced polyarthritis benefited from EM-1 treatment.. EM-1 had antiinflammatory effects in patients with OA or RA and in a model of adjuvant-induced polyarthritis. Local enhancement of EM-1 might be an interesting therapeutic option in different forms of arthritis.

    Topics: Aged; Arthritis; Arthritis, Experimental; Arthritis, Rheumatoid; Female; Humans; Immunohistochemistry; Interleukin-6; Interleukin-8; Male; Middle Aged; Oligopeptides; Osteoarthritis; Synovial Membrane

2008
Endomorphins delay constitutive apoptosis and alter the innate host defense functions of neutrophils.
    Immunology letters, 2002, Apr-01, Volume: 81, Issue:1

    Recent studies have shown that opioid peptides are released from cells of the immune system during inflammation and stress, and are associated with altered immune responses. Moreover, concentrations of opioid peptides are increased in peripheral blood and at the sites of inflammatory reactions. The aim of this study was to evaluate immunological effects of opioid peptides endomorphins 1 and 2 on constitutive apoptosis, superoxide anion production, hydrogen peroxide production, adhesion, phagocytosis, and chemotaxis of neutrophils. Neutrophils were isolated by peritoneal lavage from rats. Endomorphins 1 and 2 significantly delayed constitutive neutrophil apoptosis. The delay of neutrophil apoptosis was markedly attenuated by LY294002, a phosphoinositide 3-kinase inhibitor. Moreover, endomorphins 1 and 2 activated the phosphoinositide 3-kinase pathway as determined by phosphorylation of BAD. In contrast, endomorphins 1 and 2 blocked the production of superoxide anion and hydrogen peroxide by PMA-stimulated neutrophils. In addition, endomorphins 1 and 2 inhibited neutrophil adhesion to fibronectin. Moreover, endomorphins 1 and 2 potentiated neutrophil chemotaxis toward zymosan-activated serum and IL-8, respectively. However, endomorphins 1 and 2 did not alter phagocytosis of Escherichia coli by neutrophils. These results suggest that endomorphins 1 and 2 may act to delay neutrophil apoptosis and alter the natural immune functions of neutrophils.

    Topics: Animals; Apoptosis; Chemotaxis, Leukocyte; Hydrogen Peroxide; Interleukin-8; Male; Neutrophils; Oligopeptides; Phosphatidylinositol 3-Kinases; Rats; Rats, Wistar; Superoxides; Zymosan

2002