interleukin-8 has been researched along with chelerythrine* in 3 studies
3 other study(ies) available for interleukin-8 and chelerythrine
Article | Year |
---|---|
Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): role of PKC, MAPKs, and NF-kappaB.
Human esophageal epithelial cells play a key role in esophageal inflammation in response to acidic pH during gastroesophageal reflux disease (GERD), increasing secretion of IL-6 and IL-8. The mechanisms underlying IL-6 and IL-8 expression and secretion in esophageal epithelial cells after acid stimulation are not well characterized. We investigated the role of PKC, MAPK, and NF-kappaB signaling pathways and transcriptional regulation of IL-6 and IL-8 expression in HET-1A cells exposed to acid. Exposure of HET-1A cells to pH 4.5 induced NF-kappaB activity and enhanced IL-6 and IL-8 secretion and mRNA and protein expression. Acid stimulation of HET-1A cells also resulted in activation of MAPKs and PKC (alpha and epsilon). Curcumin, as well as inhibitors of NF-kappaB (SN-50), PKC (chelerythrine), and p44/42 MAPK (PD-098059) abolished the acid-induced expression of IL-6 and IL-8. The JNK inhibitor SP-600125 blocked expression/secretion of IL-6 but only partially attenuated IL-8 expression. The p38 MAPK inhibitor SB-203580 did not inhibit IL-6 expression but exerted a stronger inhibitory effect on IL-8 expression. Together, these data demonstrate that 1) acid is a potent inducer of IL-6 and IL-8 production in HET-1A cells; 2) MAPK and PKC signaling play a key regulatory role in acid-mediated IL-6 and IL-8 expression via NF-kappaB activation; and 3) the anti-inflammatory plant compound curcumin inhibits esophageal activation in response to acid. Thus IL-6 and IL-8 expression by acid may contribute to the pathobiology of mucosal injury in GERD, and inhibition of the NF-kappaB/proinflammatory cytokine pathways may emerge as important therapeutic targets for treatment of esophageal inflammation. Topics: Anthracenes; Anti-Inflammatory Agents; Benzophenanthridines; Cell Line; Curcumin; Enzyme Activation; Epithelial Cells; Esophagus; Flavonoids; Humans; Hydrogen-Ion Concentration; Imidazoles; Interleukin-6; Interleukin-8; Mitogen-Activated Protein Kinases; Mucous Membrane; NF-kappa B; Peptides; Protein Kinase C; Protein Kinase Inhibitors; Pyridines; Signal Transduction; Telomerase; Time Factors; Transcription, Genetic; Up-Regulation | 2009 |
Signal transduction mechanisms of CD137 ligand in human monocytes.
Bidirectional signalling, i.e. simultaneous signalling through a receptor as well as its cell surface-bound ligand has been identified for several members of the TNF and TNF receptor family members. Reverse signalling through the ligands offers the advantage of an immediate feed-back and a more precise fine tuning of biological responses. Little is known about the molecular nature of reverse signalling through the ligands. CD137 ligand, member of the TNF family is expressed on monocytes and induces activation, migration, prolongation of survival and proliferation of monocytes. Here we show that reverse signalling by CD137 ligand is mediated by protein tyrosine kinases, p38 mitogen activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1,2, MAP/ERK kinase (MEK), Phosphoinositide-3-kinase (PI3-K) and protein kinase A (PKA) but not by protein kinase C (PKC). This study also shows that reverse signalling relies on the same signal transduction molecules as signalling through classical receptors and is in its nature not different from it. Topics: 4-1BB Ligand; Alkaloids; Androstadienes; Benzophenanthridines; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Extracellular Signal-Regulated MAP Kinases; Humans; Interleukin-8; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Monocytes; Phosphatidylinositol 3-Kinases; Phosphorylation; Phosphotyrosine; Protein Kinase C; Pyrazoles; Pyrimidines; Signal Transduction; Thionucleotides; Wortmannin | 2007 |
Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts.
1. Rheumatoid arthritis is associated with the accumulation and activation of selected populations of inflammatory cells within the arthritic joint. One putative signal for this process is the production, by resident cells, of a group of inflammatory mediators known as the chemokines. 2. The chemokines interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated on activation normal T-cell expressed and presumably secreted) are target-cell specific chemoattractants produced by synovial fibroblasts in response to stimulation with interleukin-1 alpha (IL-1 alpha) or tumour necrosis factor alpha (TNF alpha). The signalling pathways involved in their production are not well defined. We therefore used four different protein kinase C inhibitors to investigate the role of this kinase in the regulation of chemokine mRNA and protein expression in human cultured synovial fibroblasts. 3. The non-selective PKC inhibitor, staurosporine (1-300 nM) significantly increased the production of IL-1 alpha-induced IL-8 mRNA and protein. A specific PKC inhibitor, chelerythrine chloride (0.1-3 microM), also caused a small concentration-dependent increase in IL-8 mRNA and protein production. In contrast, 3-[1-[3-(amidinothio)propyl]-3-indoly]-4-(1-methyl-3-indolyl )- 1H-pyrrole-2,5-dione methanesulphonate (Ro 31-8220) and 2[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3- yl)-maleimide (GF 109203X), two selective PKC inhibitors of the substituted bisindolylmaleimide family had a concentration-dependent biphasic effect on IL-1 alpha or TNF alpha-induced chemokine expression. At low concentrations they caused a stimulation in chemokine production, which was especially evident at the mRNA level. At higher concentrations both inhibited IL-1 alpha or TNF alpha-induced chemokine mRNA and protein production. Ro 31-8220 was 10 fold more potent than GF 109203X, with an IC50 of 1.6 +/- 0.08 microM (mean +/- s.e.mean, n = 4) for IL-1 alpha induced IL-8 production. Ro 31-8220 also inhibited the expression of IL-1 alpha or TNF alpha-induced MCP-1 and RANTES mRNA with a similar potency. 4. The stimulatory effect of staurosporine is discussed in relation to the known poor selectivity of this inhibitor for PKC. It is proposed that activation of an isoform of PKC, possibly PKC epsilon or zeta, which is inhibited by higher concentrations of the bisinodolylmaleimides, plays a role in the regulation of chemokine expression induced by IL-1 alpha or TNF alpha in synovial Topics: Alkaloids; Benzophenanthridines; Blotting, Northern; Cells, Cultured; Fibroblasts; Humans; Indoles; Interleukin-1; Interleukin-8; Maleimides; Phenanthridines; Protein Kinase C; RNA, Messenger; Staurosporine; Synovial Membrane; Tumor Necrosis Factor-alpha | 1996 |