interleukin-8 and betadex

interleukin-8 has been researched along with betadex* in 2 studies

Other Studies

2 other study(ies) available for interleukin-8 and betadex

ArticleYear
Simultaneous ultrasound-assisted water extraction and β-cyclodextrin encapsulation of polyphenols from Mangifera indica stem bark in counteracting TNFα-induced endothelial dysfunction.
    Natural product research, 2015, Volume: 29, Issue:17

    This study proposes an alternative technique to prevent heat degradation induced by classic procedures of bioactive compound extraction, comparing classical maceration/decoction in hot water of polyphenols from Mango (Mangifera indica L.) (MI) with ultrasound-assisted extraction (UAE) in a water solution of β-cyclodextrin (β-CD) at room temperature and testing their biological activity on TNFα-induced endothelial dysfunction. Both extracts counteracted TNFα effects on EAhy926 cells, down-modulating interleukin-6, interleukin-8, cyclooxygenase-2 and intracellular adhesion molecule-1, while increasing endothelial nitric oxide synthase levels. β-CD extract showed higher efficacy in improving endothelial function. These effects were abolished after pre-treatment with the oestrogen receptor inhibitor ICI1182,780. Moreover, the β-CD extract induced Akt activation and completely abolished the TNFα-induced p38MAPK phosphorylation. UAE and β-CD encapsulation provide an efficient extraction protocol that increases polyphenol bioavailability. Polyphenols from MI play a protective role on endothelial cells and may be further considered as oestrogen-like molecules with vascular protective properties.

    Topics: beta-Cyclodextrins; Cell Line; Cyclooxygenase 2; Endothelial Cells; Humans; Intercellular Adhesion Molecule-1; Interleukin-6; Interleukin-8; Mangifera; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Nitric Oxide Synthase Type III; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Plant Bark; Plant Extracts; Polyphenols; Signal Transduction; Tumor Necrosis Factor-alpha; Ultrasonics

2015
Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols.
    PloS one, 2014, Volume: 9, Issue:5

    Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.

    Topics: Antioxidants; beta-Cyclodextrins; Cell Line, Tumor; Cell Survival; Chemokine CCL2; Gene Expression Regulation; Humans; Hydroxycholesterols; Inflammation; Inflammation Mediators; Integrin beta1; Interleukin-8; Matrix Metalloproteinase 9; Nanoparticles; Neurodegenerative Diseases; Quercetin

2014