interleukin-8 and 7-nitroindazole

interleukin-8 has been researched along with 7-nitroindazole* in 2 studies

Other Studies

2 other study(ies) available for interleukin-8 and 7-nitroindazole

ArticleYear
Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury.
    American journal of physiology. Lung cellular and molecular physiology, 2010, Volume: 298, Issue:3

    Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury.

    Topics: Airway Obstruction; Animals; Cell Nucleus; Enzyme Activation; Hemodynamics; Indazoles; Interleukin-8; Lung Injury; Malondialdehyde; Nitrates; Nitric Oxide Synthase Type I; Nitrites; Peroxidase; Poly(ADP-ribose) Polymerases; Pressure; Regional Blood Flow; Respiratory Function Tests; Sheep; Survival Analysis; Trachea; Transcription Factor RelA; Tyrosine

2010
The blockade of cyclopiazonic acid-induced store-operated Ca2+ entry pathway by YC-1 in neutrophils.
    Biochemical pharmacology, 2004, Nov-15, Volume: 68, Issue:10

    In the presence of external Ca2+, pretreatment of neutrophils with 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) inhibited the cyclopiazonic acid (CPA)-induced [Ca2+](i) elevation in a concentration- but not a time-dependent manner, while YC-1 had no effect on the Ca2+ signals in a Ca2+-free medium. YC-1 failed to inhibit ATP- and interleukin-8 (IL-8)-induced [Ca2+](i) changes. Addition of YC-1 after cell activation strongly inhibited the CPA-induced [Ca2+](i) changes. In a classical Ca2+ readdition protocol, a similar extent inhibition of Ca2+ spike by YC-1 introduced either prior to or after CPA stimulation was obtained. In rat neutrophils, mRNA for endothelial differentiation gene (edg)1, edg5, edg6 and edg8, the putative targets for sphingosine 1-phosphate (S1P), could be detected. However, S1P was found to have little effect on Ca(2+) signals. YC-1 did not inhibit but enhanced the sphingosine-induced [Ca2+](i) changes. Inhibition by YC-1 of CPA-induced [Ca2+](i) changes was not prevented by 7-nitroindazole and N-(3-aminomethyl)benzylacetamidine (1400W), two nitric oxide synthase (NOS) inhibitors, by aristolochic acid, a phospholipase A(2) inhibitor, or by suspension in a Na(+)-deprived medium. YC-1 did not affect the mitochondrial membrane potential. Moreover, YC-1 did not alter [Ca2+](i) changes in response to ionomycin after CPA and formyl-Met-Leu-Phe (fMLP) stimulation in a Ca2+-free medium. YC-1 had no effect on the basal [Ca2+](i) level, the pharmacologically isolated plasma membrane Ca2+-ATPase activity, and Ba2+ entry into CPA-activated cells. YC-1 alone resulted in the accumulation of actin filaments in neutrophils, while significantly reduced the intensity of actin filament staining in the subsequent activation with CPA. These results indicate that YC-1 inhibited CPA-activated store-operated Ca2+ entry (SOCE) probably through the direct blockade of channel activation and/or the disruption of the integrity of the actin cytoskeleton necessary for supporting Ca2+ entry pathway in neutrophils.

    Topics: Actins; Adenosine Triphosphate; Amidines; Animals; Aristolochic Acids; Barium; Benzylamines; Calcium; Calcium Signaling; Calcium-Transporting ATPases; Drug Interactions; Enzyme Inhibitors; Indazoles; Indoles; Interleukin-8; Membrane Potentials; Mitochondria; Neutrophils; Platelet Aggregation Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Sodium; Sphingosine

2004