interleukin-8 has been researched along with 7-ketocholesterol* in 14 studies
14 other study(ies) available for interleukin-8 and 7-ketocholesterol
Article | Year |
---|---|
7β-Hydroxycholesterol and 7-ketocholesterol: New oxidative stress biomarkers of sarcopenia inducing cytotoxic effects on myoblasts and myotubes.
Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7β-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7β-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7β-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7β-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7β-hydroxy Topics: Aged; alpha-Tocopherol; Animals; Antioxidants; Apelin; Biomarkers; Case-Control Studies; Catalase; Glutathione Peroxidase; Humans; Hydroxycholesterols; Interleukin-6; Interleukin-8; Ketocholesterols; Leukotriene B4; Mice; Muscle Fibers, Skeletal; Myoblasts; Oxidative Stress; Plant Oils; Sarcopenia; Superoxide Dismutase; Tumor Necrosis Factor-alpha | 2023 |
7α-Hydroxycholesterol induces monocyte/macrophage cell expression of interleukin-8 via C5a receptor.
We investigated effects of 7-oxygenated cholesterol derivatives present in atherosclerotic lesions, 7α-hydroxycholesterol (7αOHChol), 7β-hydroxycholesterol (7βOHChol), and 7-ketocholesterol (7K), on IL-8 expression. Transcript levels of IL-8 and secretion of its corresponding gene product by monocytes/macrophages were enhanced by treatment with 7αOHChol and, to a lesser extent, 7K, but not by 7βOHChol. The 7-oxygenated cholesterol derivatives, however, did not change transcription of the IL-8 gene in vascular smooth muscle cells. 7αOHChol-induced IL-8 gene transcription was inhibited by cycloheximide and Akt1 downregulation, but not by OxPAPC. Expression of C5a receptor was upregulated after stimulation with 7αOHChol, but not with 7K and 7βOHChol, and a specific antagonist of C5a receptor inhibited 7αOHChol-induced IL-8 gene expression in a dose dependent manner. Pharmacological inhibitors of PI3K and MEK almost completely inhibited expression of both IL-8 and cell-surface C5a receptor induced by 7αOHChol. These results indicate that 7-oxygenated cholesterol derivatives have differential effects on monocyte/macrophage expression of IL-8 and C5a receptor and that C5a receptor is involved in 7αOHChol-induced IL-8 expression via PI3K and MEK. Topics: Aniline Compounds; Butadienes; Cell Membrane; Cells, Cultured; Chromones; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gene Expression; Humans; Hydroxycholesterols; Interleukin-8; Ketocholesterols; Macrophages; MAP Kinase Kinase Kinases; Monocytes; Morpholines; Nitriles; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Receptor, Anaphylatoxin C5a; Tetrahydronaphthalenes; Transcription, Genetic | 2017 |
7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells.
Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways. Topics: Apoptosis; Ataxia Telangiectasia Mutated Proteins; Biomarkers; Cell Cycle; Cell Survival; Checkpoint Kinase 1; Checkpoint Kinase 2; Cytokines; Endothelial Cells; Flow Cytometry; Gene Expression; Humans; Interleukin-8; Ketocholesterols; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction | 2016 |
The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics.
Dietary oxysterols are cholesterol auto-oxidation products widely present in cholesterol-rich foods. They are thought to affect the intestinal barrier function, playing a role in gut inflammation. This study has characterized specific cell signals that are up-regulated in differentiated CaCo-2 colonic epithelial cells by a mixture of oxysterols representative of a hyper-cholesterolemic diet. p38 MAPK activation plays a major role, while other signal branches, i.e. the JNK and ERK pathways, make minor contributions to the intestinal inflammation induced by dietary oxysterols. p38 transduction might be the missing link connecting the known NADPH oxidase activation, and the induction of NF-κB-dependent inflammatory events related to oxysterols' action in the intestine. A NOX1/p38 MAPK/NF-κB signaling axis was demonstrated by the quenched inflammation observed on blocking individual branches of this signal with specific chemical inhibitors. Furthermore, all these signaling sites were prevented when CaCo-2 cells were pre-incubated with phenolic compounds extracted from selected wines made of typical Sardinian grape varieties: red Cannonau and white Vermentino. Notably, Cannonau was more effective than Vermentino. The effect of Sardinian wine extracts on intestinal inflammation induced by dietary oxysterols might mainly be due to their phenolic content, more abundant in Cannonau than in Vermentino. Furthermore, among different phenolic components of both wines, epicatechin and caffeic acid exerted the strongest effects. These findings show a major role of the NOX1/p38 MAPK/NF-κB signaling axis in the activation of oxysterol-dependent intestinal inflammation, and confirm the concept that phenolics act as modulators at different sites of pro-oxidant and pro-inflammatory cell signals. Topics: Caco-2 Cells; Caffeic Acids; Cell Survival; Cholesterol; Epithelial Cells; Humans; Hydroxycholesterols; Inflammation; Interleukin-8; Intestinal Mucosa; Intestines; Ketocholesterols; NADPH Oxidase 1; NADPH Oxidases; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phenols; Reactive Oxygen Species; Signal Transduction; Up-Regulation; Vitis; Wine | 2015 |
Relative expression of cholesterol transport-related proteins and inflammation markers through the induction of 7-ketosterol-mediated stress in Caco-2 cells.
Human diets contain sterol oxidation products that can induce cytotoxic effects, mainly caused by cholesterol oxides. However, phytosterol oxides effects have been less extensively investigated. This study evaluates the production of inflammatory biomarkers (IL-1β, IL-8, IL-10, TNFα) and the influence of gene expression transporters and enzymes related to cholesterol absorption and metabolism (NPC1L1, ABCG5/8, HMGCoA, ACAT) produced by 7-ketosterols (stigmasterol/cholesterol) in Caco-2 cells. These effects were linked to intracellular signaling pathways by using several inhibitors. Results showed 7-ketostigmasterol to have a greater proinflammatory potential than 7-ketocholesterol. In non-pre-treated cells, only efflux transporters were down-regulated by 7-ketosterols, showing a greater influence upon ABCG5 expression. Cell-pre-incubation with bradykinin induced changes in ABCG expression levels after 7-ketostigmasterol-incubation; however, the energetic metabolism inhibition reduced NPC1L1 expression only in 7-ketocholesterol-incubated cells. In non-pre-treated cells, HMG-CoA was up-regulated by both 7-ketosterols. However, exposure to inhibitors down-regulated the expression levels, mainly in 7-ketocholesterol-incubated cells. While ACAT expression values in non-pre-treated cells were unchanged, exposure to inhibitors caused down-regulation of mRNA levels. These results suggest that internalization and excretion of 7-ketostigmasterol is probably influenced by [Ca]i, which also could mediate HMGCoA activity in POPs metabolism. However, energetic metabolism and reducing equivalents exert different influences upon the 7-ketosterol internalization. Topics: Acetyl-CoA C-Acetyltransferase; Acyl Coenzyme A; Anticholesteremic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 5; ATP-Binding Cassette Transporters; Biological Transport; Biomarkers; Bradykinin; Caco-2 Cells; Down-Regulation; Humans; Inflammation; Interleukin-10; Interleukin-1beta; Interleukin-8; Ketocholesterols; Lipoproteins; Membrane Proteins; Membrane Transport Proteins; RNA, Messenger; Stigmasterol; Tumor Necrosis Factor-alpha; Up-Regulation | 2013 |
Differential effects of the estrogen receptor agonist estradiol on toxicity induced by enzymatically-derived or autoxidation-derived oxysterols in human ARPE-19 cells.
Disturbances in cholesterol metabolism and increased levels of cholesterol oxidation products (oxysterols) in retina may contribute to age-related macular degeneration (AMD). The role of oxysterols or of their target receptors liver X receptors (LXRs) and estrogen receptors (ERs) in the pathogenesis of MD is ill-known. The purpose of this study is to determine the extent to which the oxysterols 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC) and 7-ketocholesterol (7-KC) affect the transcriptional activity of LXR and ER.. ARPE-19 cells, untreated or incubated with 27-OHC, 25-OHC or 7-KC for 24 h were harvested. We used Western blot analyses for detecting ERs and LXRs expression, dual luciferase assays for measuring LXRs and ERs transcriptional activity, cytotox-ONE homogeneous membrane integrity assay for measuring cytotoxicity, JC-1 method for measuring mitochondrial membrane potential changes and ELISA for measuring cytokine levels.. Both LXRs and ERs are expressed and are transcriptionally active in ARPE-19 cells. 27-OHC, 25-OHC and 7-KC inhibited ER-mediated transcriptional activity, whereas 27-OHC and 25-OHC increased LXR-mediated transcription. E2 reduced 25-OHC and 27-OHC-induced cytotoxicity, mitochondrial permeability potential decline, and cytokine secretion. The LXR agonist GW3965 or the LXR antagonist 5α-6α-epoxycholesterol-3-sulfate (ECHS) did not offer protection against either 27-OHC and 25-OHC or 7-KC.. Increased levels of oxysterols can decrease ER and increase LXR signaling. ER agonists can offer protection against cytotoxic effects of 27-OHC and 25-OHC, two oxysterols derived by enzymatic reactions. Although they exert similar toxicity, the cellular mechanisms involved in the toxic effects of oxysterols whether derived by enzymatic or autoxidation reactions appear to be different. Topics: Cell Line; Chemokine CCL2; Drug Interactions; Estradiol; Estrogen Receptor alpha; Estrogen Receptor beta; Humans; Hydroxycholesterols; Interleukin-6; Interleukin-8; Ketocholesterols; Liver X Receptors; Macular Degeneration; Orphan Nuclear Receptors; Oxidation-Reduction; Platelet-Derived Growth Factor; Retinal Pigment Epithelium; Transcription, Genetic; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A | 2013 |
Regulation of the expression of interleukin-8 induced by 25-hydroxycholesterol in retinal pigment epithelium cells.
This study aimed at elucidating the molecular mechanisms involved in the regulation of IL-8 production by several oxysterols in retinal pigment epithelium (RPE) cells.. A human cell line from RPE (ARPE-19) was used to test the role of cholesterol and several oxysterols (25-OH, 7-KC and 7β-OH) in the expression and secretion of IL-8. Expression of IL-8 was assessed by real-time PCR, while IL-8 secretion was evaluated by ELISA. PI3K-, MEK1/2-, ERK1/2- and NF-κB-specific inhibitors were used to assess the specific role of the several players on the regulation of IL-8 production by oxysterols. A gene-reporter assay for AP-1 activity was also conducted to evaluate the putative role of this transcription factor on IL-8 expression induced by oxysterols.. Here, we demonstrate that 25-OH specifically increases transcription and secretion of the cytokine IL-8 in ARPE-19 cells. Indeed, treatment of ARPE-19 with 25-OH, but not with 7-KC, 7β-OH or cholesterol, induced the secretion of IL-8 from cells. 25-OH also induced the activation/phosphorylation of ERK1/2 through a mechanism dependent on MEK, ERK1/2 and PI3K kinase activity. Real-time PCR and ELISA experiments demonstrated that 25-OH increased transcription and secretion of IL-8 through a mechanism that is dependent on ERK1/2 and PI3K activity. Furthermore, 25-OH triggered the activation/phosphorylation of the AP-1 component c-Jun and, consistently, increased the transcriptional activity of AP-1. Additionally, we also found that 25-OH decreases the levels of IκB and increases the nuclear levels of NF-κB p65 subunit and that inhibition of NF-κB activity partially prevents the increased secretion of IL-8 induced by 25-OH.. The results presented in this study suggest a role for 25-OH in inducing IL-8 production through pathways that are likely to involve AP-1 and NF-κB in ARPE-19 cells. Our data may also provide new molecular targets for the treatment of AMD. Topics: Blotting, Western; Cell Line; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Genes, Reporter; Humans; Hydroxycholesterols; Interleukin-8; Ketocholesterols; NF-kappa B; Phosphatidylinositol 3-Kinases; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium; RNA, Messenger; Transcription Factor AP-1 | 2012 |
Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-κB nuclear binding and increase in PPARγ expression.
It is now well accepted that oxysterols play important roles in the formation of atherosclerotic plaque, involving cytotoxic, pro-oxidant and proinflammatory processes. It has been recently suggested that tomato lycopene may act as a preventive agent in atherosclerosis, although the exact mechanism of such a protection is not clarified. The main aim of this study was to investigate whether lycopene is able to counteract oxysterol-induced proinflammatory cytokines cascade in human macrophages, limiting the formation of atherosclerotic plaque. Therefore, THP-1 macrophages were exposed to two different oxysterols, such as 7-keto-cholesterol (4-16 μM) and 25-hydroxycholesterol (2-4 μM), alone and in combination with lycopene (0.5-2 μM). Both oxysterols enhanced pro-inflammatory cytokine [interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor α) secretion and mRNA levels in a dose-dependent manner, although at different extent. These effects were associated with an increased reactive oxygen species (ROS) production through an enhanced expression of NAD(P)H oxidase. Moreover, a net increment of phosphorylation of extracellular regulated kinase 1/2, p-38 and Jun N-terminal kinase and of nuclear factor kB (NF-κB) nuclear binding was observed. Lycopene prevented oxysterol-induced increase in pro-inflammatory cytokine secretion and expression. Such an effect was accompanied by an inhibition of oxysterol-induced ROS production, mitogen-activated protein kinase phosphorylation and NF-κB activation. The inhibition of oxysterol-induced cytokine stimulation was also mimicked by the specific NF-κB inhibitor pyrrolidine dithiocarbamate. Moreover, the carotenoid increased peroxisome proliferator-activated receptor γ levels in THP-1 macrophages. Taken all together, these data bring new information on the anti-atherogenic properties of lycopene, and on its mechanisms of action in atherosclerosis prevention. Topics: Carotenoids; Cell Line; Cytokines; Humans; Hydroxycholesterols; Interleukin-1beta; Interleukin-6; Interleukin-8; Ketocholesterols; Lycopene; Macrophages; Mitogen-Activated Protein Kinases; NADPH Oxidases; NF-kappa B; Phosphorylation; Plaque, Atherosclerotic; PPAR gamma; Protein Binding; Reactive Oxygen Species; RNA, Messenger; Signal Transduction; Tumor Necrosis Factor-alpha | 2011 |
Oxidized low-density lipoprotein increases interleukin-8 production in human gingival epithelial cell line Ca9-22.
Recent epidemiological studies have shown a correlation between periodontitis and hyperlipidemia. We have found high levels of oxidized low-density lipoprotein (OxLDL) in the gingival crevicular fluid of dental patients. In the present study, we tried to examine the possible role of OxLDL in periodontal inflammation in vitro.. Cells of the human gingival epithelial cell line Ca9-22 were cultured in media containing OxLDL, and the amounts of interleukin-8 (IL-8) and prostaglandin E(2) (PGE(2)) produced were measured using ELISAs.. Production of IL-8 by Ca9-22 cells was significantly increased when the cells were treated with OxLDL, but not with native LDL or acetylated LDL. Production of PGE(2) by Ca9-22 cells was enhanced by co-incubation with OxLDL and interleukin-1 beta (IL-1 beta). Scavenger receptor inhibitors, fucoidan and dextran sulfate, inhibited the OxLDL-induced IL-8 and PGE(2) production in the presence of IL-1 beta. The p(38) MAPK inhibitors SB203580 and SB202190 and the ERK inhibitor PD98059 inhibited the OxLDL-induced IL-8 production. Among oxidized lipids and chemically modified LDL, 7-ketocholesterol enhanced IL-8 production.. This is the first report to show that OxLDL enhances IL-8 production in epithelial cells. Topics: Cell Line, Tumor; Chemokine CCL2; Cholesterol 7-alpha-Hydroxylase; Dextran Sulfate; Dinoprostone; Enzyme Inhibitors; Epithelial Cells; Flavonoids; Fucose; Gingiva; Humans; Imidazoles; Interleukin-1beta; Interleukin-8; Ketocholesterols; Lipoproteins, LDL; Mitogen-Activated Protein Kinases; Oxidation-Reduction; p38 Mitogen-Activated Protein Kinases; Periodontitis; Polysaccharides; Pyridines; Receptors, Scavenger; Sulfuric Acid Esters | 2010 |
7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFκB but independently of reactive oxygen species formation.
7-Ketocholesterol (7KCh) accumulates in oxidized lipoprotein deposits and is known to be involved in macrophage foam cell formation and atherosclerosis. 7-KCh is present in the primate retina and is associated with oxidized lipoprotein deposits located in the choriocapillaris, Bruch's membrane, and retinal pigment epithelium (RPE). 7-KCh can also be formed in the retina as a consequence of light-induced iron release. The purpose of this study was to examine the signaling pathways involved in the 7KCh-mediated inflammatory response focusing on three cytokines, VEGF, IL-6, and IL-8.. ARPE-19 cells were treated with 7KCh solubilized in hydroxypropyl-β-cyclodextrin. Cytokines were quantified by qRT-PCR (mRNA) and ELISA (protein) using commercially available products. NFκB activation was determined by IκBα mRNA induction.. Treatment of ARPE-19 cells with 15 μM 7KCh markedly induced the expression of VEGF, IL-6, and IL-8. No increase in NOX-4 expression or ROS formation was detected. 7KCh induced the phosphorylation of ERK1/2 and p38MAPK, and inhibitors to these kinases markedly reduced the cytokine expression but did not affect the IκBα mRNA expression. By contrast, inhibition of PI3K and PKCζ significantly decreased the cytokine and IκBα mRNA expression. Inhibition of the IκB kinase complex essentially ablated all cytokine induction.. 7KCh induces cytokines via three kinase signaling pathways, AKT-PKCζ-NFκB, p38 MAPK, and ERK. The MAPK/ERK pathways seem to preferentially enhance cytokine induction downstream from NFκB activation. The results of this study suggest that 7KCh activates these pathways through interactions in the plasma membrane, but the mechanism(s) remains unknown. Topics: Cell Line; Cell Survival; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Extracellular Signal-Regulated MAP Kinases; Humans; Immunoblotting; Interleukin-6; Interleukin-8; Ketocholesterols; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Kinases; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Retinal Pigment Epithelium; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Vascular Endothelial Growth Factor A | 2010 |
Proinflammatory effect of cholesterol and its oxidation products on CaCo-2 human enterocyte-like cells: effective protection by epigallocatechin-3-gallate.
Cholesterol and its oxidation products, namely oxysterols, have very recently been shown to potentially interfere with homeostasis of the human digestive tract, by promoting and sustaining irreversible damage of the colonic epithelial layer. This report concerns the strong proinflammatory action that a dietary oxysterol mixture and, to a lesser extent, an identical concentration of unoxidized cholesterol exert on CaCo-2 colonic epithelial cells by up-regulating both expression and synthesis of interleukin 8. The oxysterol mixture and its most effective component, 7β-hydroxycholesterol, are also shown to markedly enhance the expression of key inflammatory and chemotactic cytokines in colonic epithelial cells, more efficiently than unoxidized cholesterol. The sterols' proinflammatory effect seems to be mediated by enhanced activation of NOX1, because it is prevented by pretreatment of the cells with DPI, a selective inhibitor of this oxidase. Importantly, NOX1 hyperactivation by the oxysterol mixture or cholesterol was fully prevented by CaCo-2 cell preincubation with epigallocatechin-3-gallate. Consistently, supplementation with this compound fully protected colonic epithelial cells against overexpression of inflammatory and chemotactic genes induced by the sterols investigated. Topics: Antioxidants; Apoptosis; Caco-2 Cells; Catechin; Cholesterol; Enterocytes; Enzyme Activation; Humans; Hydroxycholesterols; Inflammation Mediators; Interleukin-8; Ketocholesterols; NADPH Oxidases; Onium Compounds; Up-Regulation | 2010 |
Analysis of the capture and influence of nanoparticles on the cytotoxic effects of 7-ketocholesterol on cardiac cells: investigation by flow cytometry and by dynamic and spectral imaging microscopy associated with factor analysis of medical image sequence
To evaluate the capture of nanoparticles (quantum dots [QDs], fluorospheres) by nonbeating mouse cardiac cells (HL1-NB) cultured without or with 7-ketocholesterol (7KC) found at an increased level in the plasma of atherosclerotic patients and to simultaneously analyze their cytotoxic, proinflammatory and oxidative properties.. Flow cytometry (FCM), confocal laser scanning microscopy and subsequent factor analysis image processing were used to characterize the uptake of nanoparticles and to define their cytotoxicity, evaluated by enhanced permeability to SYTOX Green, release of lactate dehydrogenase (LDH) and morphologic nuclear changes determined with Hoechst 33342. Proinflammatory effects were estimated by enzyme linked immunoassay to quantify IL-8 and MCP-1 secretion. The overproduction of reactive oxygen species (ROS) was determined by FCM with hydroethidine.. Whereas the nanoparticles had no cytotoxic or inflammatory effects, they could stimulate ROS production. QDs were not incorporated. When 7KC was used, LDH release was enhanced and QDs potentialized IL-8 secretion. The incorporation and exit dynamics of nanoparticles were visualized to differentiate the emission spectra of SYTOX Green and nanoparticles and to precisely determine the cellular localization of nanoparticles.. The selected nanoparticles, which accumulate at the inner or outer cytoplasmic membrane level, can induce biologic activities and are able to interfere with those of chemically defined molecules such as 7KC. Topics: Animals; Benzimidazoles; Cell Line, Tumor; Cell Membrane Permeability; Cell Nucleus; Cell Survival; Chemokine CCL2; Chromogenic Compounds; Drug Therapy, Combination; Enzyme Inhibitors; Factor Analysis, Statistical; Flow Cytometry; Interleukin-8; Ketocholesterols; L-Lactate Dehydrogenase; Mice; Microscopy, Confocal; Microscopy, Fluorescence, Multiphoton; Myocytes, Cardiac; Quantum Dots; Reactive Oxygen Species | 2009 |
25-Hydroxycholesterol, 7beta-hydroxycholesterol and 7-ketocholesterol upregulate interleukin-8 expression independently of Toll-like receptor 1, 2, 4 or 6 signalling in human macrophages.
Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7beta-hydroxycholesterol (7beta-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IkappaBalpha degradation or tumour necrosis factor-alpha release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling. Topics: Cells, Cultured; Epithelial Cells; Humans; Hydroxycholesterols; Interleukin-8; Ketocholesterols; Macrophages; Signal Transduction; Toll-Like Receptor 1; Toll-Like Receptor 2; Toll-Like Receptor 4; Toll-Like Receptor 6; Toll-Like Receptors; Transfection; Up-Regulation | 2007 |
Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells.
Aging is associated with an accumulation of cholesterol esters in the Bruch membrane. Cholesterol esters are prone to undergo oxidation and generate oxysterols that have cytotoxic and proinflammatory properties. We investigated the effects of three oxysterols on mitochondrial dysfunctions, inflammation, and oxidative stress in primary cultures of porcine retinal pigment epithelial (RPE) cells.. RPE cells were incubated with oxysterols (50 micro M of 24-hydroxycholesterol, 25-hydroxycholesterol, or 7-ketocholesterol) for 24 hr and 48 hr. Oxysterol content was determined in cells and in corresponding media by gas chromatography. Mitochondrial activity was measured by mitochondrial dehydrogenase activity. The intracellular formation of reactive oxygen species in RPE cells was detected by using the fluorescent probe DCFH-DA. IL-8 was assayed in the supernatants by ELISA, and the corresponding cellular transcripts were semiquantified by RT-PCR.. Analyses of the oxysterols content in the RPE cells and corresponding media suggested a high rate of cellular uptake, although some differences were observed between 7-ketocholesterol on the one hand and 24-hydroxycholesterol and 25-hydroxycholesterol on the other hand. All oxysterols induced slight mitochondrial dysfunctions but a significant 2- to 4-fold increase in reactive oxygen species (ROS) production compared with the control. They also enhanced IL-8 gene expression and IL-8 protein secretion in the following decreasing order: 25-hydroxycholesterol > 24-hydroxycholesterol > 7-ketocholesterol.. We conclude that in confluent primary porcine RPE cells, 24-hydroxycholesterol, 25-hydroxycholesterol, and 7-ketocholesterol are potent inducers of oxidation and inflammation. Topics: Animals; Chromatography, Gas; Enzyme-Linked Immunosorbent Assay; Fluoresceins; Fluorescent Dyes; Hydroxycholesterols; Inflammation; Interleukin-8; Ketocholesterols; Mitochondria; Oxidative Stress; Pigment Epithelium of Eye; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Swine | 2007 |