inositol-1-4-5-trisphosphate has been researched along with fura-red* in 4 studies
4 other study(ies) available for inositol-1-4-5-trisphosphate and fura-red
Article | Year |
---|---|
Mechanism of collagen activation in human platelets.
The mechanism of collagen-induced human platelet activation was examined using Ca2+, Na+, and the pH-sensitive fluorescent dyes calcium green/fura red, sodium-binding benzofuran isophthalate, and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Administration of a moderate dose of collagen (10 microg/ml) to human platelets resulted in an increase in [Ca2+](i) and platelet aggregation. The majority of this increase in [Ca2+](i) resulted from the influx of calcium from the extracellular milieu via the Na+/Ca2+ exchanger (NCX) functioning in the reverse mode and was reduced in a dose-dependent manner by the NCX inhibitors 5-(4-chlorobenzyl)-2',4'-dimethylbenzamil (KD(50) = 4.7 +/- 1.1 microm) and KB-R7943 (KD(50) = 35.1 +/- 4.8 microm). Collagen-induced platelet aggregation was dependent on an increase in [Ca2+](i) and could be inhibited by chelation of intra- and extracellular calcium through the administration of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) and EGTA, respectively, or via the administration of BAPTA-AM to platelets suspended in no-Na+/HEPES buffer. Collagen induced an increase in [Ca2+](i) (23.2 +/- 7.6 mm) via the actions of thromboxane A(2) and, to a lesser extent, of the Na+/H+ exchanger. This study demonstrates that the collagen-induced increase in [Ca2+](i) is dependent on the concentration of Na+ in the extracellular milieu, indicating that the collagen-induced increase in [Ca2+](i) causes the reversal of the NCX, ultimately resulting in an increase in [Ca2+](i) and platelet aggregation. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aspirin; Benzofurans; Blood Platelets; Calcium; Collagen; Dose-Response Relationship, Drug; Egtazic Acid; Ethers, Cyclic; Fluoresceins; Fluorescent Dyes; Humans; Hydrogen-Ion Concentration; Imidazoles; Inositol 1,4,5-Trisphosphate; Models, Biological; Organic Chemicals; Platelet Activation; Platelet Aggregation; Sodium; Sodium-Calcium Exchanger; Specimen Handling; Temperature; Thromboxane A2; Time Factors; Vasoconstrictor Agents | 2004 |
InsP(3)-induced Ca(2+) release in permeabilized invertebrate photoreceptors: a link between phototransduction and Ca(2+) stores.
Using the low-affinity fluorescent Ca(2+) indicators, Mag-Fura-2 and Mag-Fura Red, we studied light- and InsP(3)-induced Ca(2+) release in permeabilized microvillar photoreceptors of the medicinal leech, Hirudo medicinalis. Two major components of the phosphoinositide signaling pathway, phospholipase-C and the InsP(3) receptor, were characterized immunologically and appropriately localized in photoreceptors. Whereas phospholipase-C was abudantly expressed in photoreceptive microvilli, InsP(3) receptors were found mostly in submicrovillar endoplasmic reticulum (SER). Permeabilization of the peripheral plasma membrane with saponin allowed direct measurements of luminal free Ca(2+) concentration (Ca(L)) changes. Confocal Ca(2+) imaging using Mag-Fura Red demonstrated that Ins(1,4,5)P(3) mobilizes Ca(2+) from SER. As detected with Mag-Fura-2, a brief 50ms light flash activated rapid Ca(2+) depletion of SER, followed by an effective refilling within 1min of dark adaptation after the light flash. Sensitivity to Ins(1,4,5)P(3) of the Ca(2+) release from SER in leech photoreceptors was accompanied by irreversible uncoupling of phototransduction from Ca(2+) release. Depletion of Ca(2+) stores was induced by Ins(1,4,5)P(3)(EC(50)= 4.75 microM) and the hyper-potent agonist adenophostin A (EC(50)/40nM) while the stereoisomer L-myo Ins(1,4,5)P(3) was totally inactive. Ins(1,4,5)P(3)- or adenophostin A-induced Ca(2+) release was inhibited by 0.1-1mg/ml heparin. The Ca(2+) pump inhibitors, cyclopiazonic acid and thapsigargin, in the presence of Ins(1,4,5)P(3), completely depleted Ca(2+) stores in leech photoreceptors. Topics: Animals; Benzofurans; Calcium; Calcium Channels; Endoplasmic Reticulum; Fluorescent Dyes; Fura-2; Imidazoles; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Leeches; Phosphatidylinositol Diacylglycerol-Lyase; Photoreceptor Cells, Invertebrate; Receptors, Cytoplasmic and Nuclear; Type C Phospholipases; Vision, Ocular | 2001 |
Imaging of quantal calcium release in the inositol 1,4,5-trisphosphate-sensitive organelles of permeabilized HSY cells.
The spatial characteristics of inositol 1,4,5-trisphosphate (IP3)-induced quantal Ca2+ release were examined by imaging Ca2+ concentrations within Ca2+ stores ([Ca2+]L) in permeabilized HSY cells. The image of mag-fura-2 fluorescent ratio with dual excitation (344 nm/360 nm) demonstrated that a sequential application of different concentrations of IP3 (0.1, 0.3, 10 microM) resulted in a stepwise decrease in the ratio at all regions of the cytoplasm. This change in the ratio suggests that the stepwise decrease in [Ca2+]L is associated with the quantal Ca2+ release. To monitor the change in [Ca2+]L within a single organelle, IP3-dependent changes in the mag-fura-red fluorescence of permeabilized cells were studied by confocal microscopy. Applications of increasing concentrations of IP3 caused a stepwise increase in fluorescence within ER-like reticulum structures of the cytoplasm. This finding suggests that the [Ca2+]L in a single Ca2+ store was not depleted by submaximal concentrations of IP3, and supports the steady-state model of quantal Ca2+ release. Topics: Adenocarcinoma; Benzofurans; Calcium; Cell Membrane Permeability; Diagnostic Imaging; Dose-Response Relationship, Drug; Endoplasmic Reticulum; Fluorescent Dyes; Fura-2; Humans; Imidazoles; Inositol 1,4,5-Trisphosphate; Microscopy, Confocal; Organelles; Salivary Gland Neoplasms; Saponins; Tumor Cells, Cultured | 1998 |
Detection of a trigger zone of bradykinin-induced fast calcium waves in PC12 neurites.
Bradykinin and caffeine were used as two different agonists to study inositol 1,4,5-trisphosphate (IP3)-sensitive and caffeine/ryanodine-sensitive intracellular Ca2+ release in the outgrowing neurites of nerve-growth-factor (NGF)-treated rat phaeochromocytoma cells (PC12). Changes in neuritic intracellular free Ca2+ ([Ca2+]i) in single cells were measured after loading with a 1:1 mixture of the acetoxymethyl (AM) ester of the Ca2+-sensitive dyes Fura-red and Fluo-3, in combination with confocal microscopy. Bradykinin-induced Ca2+ release was blocked by U73211, a specific phospholipase C inhibitor. Caffeine-induced Ca2+ release was very low in neurites at rest. It increased after the cells were preloaded with Ca2+. The Ca2+ signal evoked at high concentrations of bradykinin (>500 nM) arose from a trigger zone in the proximal part of the neurite, as a bi-directional wave towards the growth cone and cell body. The speed of neuritic Ca2+ waves was reduced in cells loaded with the Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-tetraacetic acid/AM. Preloading of Ca2+ stores led to increased bradykinin-induced Ca2+ release, as seen for caffeine, and faster Ca2+ wave speeds. Caffeine evoked a simultaneous [Ca2+]i rise along the neurites of Ca2+ preloaded cells. Higher Ca2+ signal amplitudes and faster Ca2+ wave speeds, but no longer-lasting IP3-induced [Ca2+]i signals, correlated with increased caffeine-induced Ca2+ release in the neurites. At low concentrations of bradykinin (<1.0 nM), the Ca2+ signals ceased to propagate as complete Ca2+ waves. Instead, repetitive stochastic Ca2+ release events (neuritic Ca2+ puffs) were observed. Neuritic Ca2+ puffs spread across only a few microns, at a slower speed than neuritic Ca2+ waves. These Ca2+ puffs represent elementary Ca2+ release units, whereby the released Ca2+ ions form these elementary events into the shape of a Ca2+ wave. Topics: Aniline Compounds; Animals; Benzofurans; Bradykinin; Caffeine; Calcium; Cell Line; Egtazic Acid; Evoked Potentials; Imidazoles; Inositol 1,4,5-Trisphosphate; Microscopy, Confocal; Nerve Growth Factors; Neurites; Neurons; PC12 Cells; Rats; Ryanodine; Xanthenes | 1996 |