inosine-triphosphate and mannose-1-phosphate

inosine-triphosphate has been researched along with mannose-1-phosphate* in 1 studies

Other Studies

1 other study(ies) available for inosine-triphosphate and mannose-1-phosphate

ArticleYear
Purification and properties of mycobacterial GDP-mannose pyrophosphorylase.
    Archives of biochemistry and biophysics, 1999, Feb-15, Volume: 362, Issue:2

    The enzyme that catalyzes the formation of GDP-d-mannose from GTP and alpha-d-mannose-1-P was purified about 2300-fold to near homogeneity from the soluble fraction of Mycobacterium smegmatis. At the final stage of purification, a major protein band of 37 kDa was observed and this band was specifically labeled, and in a concentration-dependent manner, by the photoaffinity probe 8-N3-GDP[32P]-d-mannose. The purified enzyme was stable for several months when kept in the frozen state. The 37-kDa band was subjected to protein sequencing and one peptide sequence of 25 amino acids showed over 80% identity to GDP-mannose pyrophosphorylases of pig liver and Saccharomyces cerevesiae. In contrast to some other bacterial GDP-mannose pyrophosphorylases, the mycobacterial enzyme was not multifunctional and did not have phosphomannose isomerase or phosphoglucose isomerase activity. Also, in contrast to the pig liver enzyme which uses mannose-1-P or glucose-1-P plus GTP to synthesize either GDP-mannose or GDP-glucose, the mycobacterial enzyme was specific for mannose-1-P as the sugar phosphate substrate. The enzyme was also relatively specific for GTP as the nucleoside triphosphate substrate. ITP was about 18% as effective as GTP, but ATP, CTP, and UTP were inactive. The activity of the enzyme was inhibited by GDP-glucose and glucose-1-P, although neither was a substrate for this enzyme. The pH optimum for the enzyme was 8.0, and Mg2+ was the best cation with optimum activity at about 5 mM. This enzyme is important for producing the activated form of mannose for formation of cell wall lipoarabinomannan and various mannose-containing glycolipids and polysaccharides.

    Topics: Amino Acid Sequence; Animals; Enzyme Stability; Glucosephosphates; Guanosine Diphosphate Mannose; Guanosine Diphosphate Sugars; Guanosine Triphosphate; Hydrogen-Ion Concentration; Inosine Triphosphate; Kinetics; Magnesium; Mannose-6-Phosphate Isomerase; Mannosephosphates; Molecular Sequence Data; Molecular Weight; Mycobacterium smegmatis; Nucleotidyltransferases; Photoaffinity Labels; Sequence Analysis; Sequence Homology, Amino Acid; Substrate Specificity

1999