indigo-carmine has been researched along with methyl-orange* in 7 studies
7 other study(ies) available for indigo-carmine and methyl-orange
Article | Year |
---|---|
Mechanistically understanding adsorption of methyl orange, indigo carmine, and methylene blue onto ionic/nonionic polystyrene adsorbents.
Topics: Adsorption; Azo Compounds; Hydrogen-Ion Concentration; Indigo Carmine; Kinetics; Methylene Blue; Polystyrenes; Thermodynamics; Water Pollutants, Chemical | 2021 |
CuO embedded chitosan spheres as antibacterial adsorbent for dyes.
Chitosan/copper oxide (CS/CuO) composite spheres were prepared by simple mixing of CuO nanomaterials in CS solution followed by dropwise addition to NH4OH solution. The characterizations of all the prepared spheres were carried out by FESEM, EDS, XRD, XPS, and FTIR analyses while the thermal properties were analyzed by TGA. Further the ability of composite spheres was tested as an easily removable pollutant adsorbent from water containing different dyes and compared with pure CS. Composite spheres were found to be the best adsorbent when applied to remove indigo carmine (IC), congo red (CR) and methyl orange (MO) from water. Amongst the three dyes, CS/CuO composite spheres were more selective toward MO adsorption. CS/CuO composite spheres also displayed significant antibacterial activity by inhibiting Pseudomonas aeruginosa growth. Thus the fabricated composite spheres can be used as a biosorbent in the future. Topics: Adsorption; Ammonium Hydroxide; Anti-Bacterial Agents; Azo Compounds; Chitosan; Coloring Agents; Congo Red; Copper; Humans; Hydrogen-Ion Concentration; Indigo Carmine; Kinetics; Nanocomposites; Pseudomonas aeruginosa; Temperature; Wastewater; Water Pollutants, Chemical; Water Purification | 2016 |
Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes.
Chitosan/cobalt-silica (Co-MCM) nanocomposites were synthesized for the purification of effluent by adding 5, 15 and 25mL of Co-MCM solution to the aqueous chitosan solution for the formation of chitosan/Co-MCM-5, chitosan/Co-MCM-15 and chitosan/Co-MCM-25, respectively. These different nanocomposites were characterized by FESEM, EDS, X-ray crystallography and IR spectrophotometer and employed for the adsorption of various dyes (methyl orange, acridine orange, indigo carmine and congo red). The respective nanocomposites showed good adsorption toward methyl orange, indigo carmine and congo red while all nanocomposites were inactive for acridine orange dye. Among the nanocomposites, chitosan/Co-MCM-15 showed the highest adsorption performance which might be due to ideal dispersion of Co-MCM inside the chitosan polymer host. Chitosan/Co-MCM-15 exhibited high adsorption for methyl orange as compared to indigo carmine. We have further checked the biological potential of chitosan/Co-MCM nanocomposites against gram positive and negative bacteria as well as multi drug resistant bacteria. The results favor the strongest bioactivities of chitosan/Co-MCM-15 against various gram positive and gram negative bacteria as well as multi drug resistant bacteria, which further suggest the ideal dispersion of Co-MCM in chitosan polymer host and is responsible for the improvement of both adsorption as well as biological performance. Topics: Adsorption; Anti-Bacterial Agents; Azo Compounds; Bacteria; Chitosan; Cobalt; Coloring Agents; Indigo Carmine; Nanocomposites; Silicon Dioxide | 2016 |
Removal of organic pollutants in model water and thermal wastewater using clay minerals.
Water treatment method was developed for the removal of different anionic dyes such as methyl orange and indigo carmine, and also for thymol applying sodium bentonite and cationic surfactant - hexadecyltrimethylammonium bromide (HTAB) - or polyelectrolytes (polydiallyldimethylammonium chloride, poly-DADMAC and poly-amines). The removal efficiency of these model substrates was examined in model water using UV-Vis spectrophotometry, HPLC and TOC analysis. The clay mineral and HTAB were added in one step to the polluted model water in Jar-test experiments. The influence of the cation exchange capacity (CEC) of the applied clay mineral and the presence of polyaluminium chloride coagulant (BOPAC) were also tested for the water treatment process. The structures of the in situ produced and pre-prepared organoclay composites were compared by XRD analysis. The rapid formation of organoclay adsorbents provided very efficient removal of the dyes (65-90 % in 3-10 mg/L TOC(0) range) with 200 mg/L sodium bentonite dose, however thymol was less efficiently separated. Adsorption efficiencies of the composites were compared at different levels of ion exchange such as at 40, 60 and 100 %. In the case of thymol, the elimination of inorganic carbon from the model water before the TOC analysis resulted in some loss of the analysed volatile compound therefore the HPLC analysis was found to be the most suitable tool for the evaluation of the process. This one-step adsorption method using in situ formed organoclay was better performing than the conventional process in which the montmorillonite-surfactant composite is pre-preapared and subsequently added to the polluted water. The purification performance of this method was also evaluated on raw and artificially polluted thermal wastewater samples containing added thymol. Topics: Allyl Compounds; Aluminum Hydroxide; Azo Compounds; Cetrimonium; Cetrimonium Compounds; Chromatography, High Pressure Liquid; Indigo Carmine; Organic Chemicals; Polyamines; Polymers; Quaternary Ammonium Compounds; Waste Disposal, Fluid; Water Pollutants, Chemical; X-Ray Diffraction | 2011 |
Sensitive and rapid titrimetric and spectrophotometric methods for the determination of stavudine in pharmaceuticals using bromate-bromide and three dyes.
Four sensitive and rapid methods for the determination of stavudine (STV) in bulk drug and in dosage forms were developed and optimized. In titrimetry, aqueous solution of STV was treated with a known excess of bromate-bromide in HCl medium followed by estimation of unreacted bromine by iodometric back titration. Spectrophotometric methods involve the addition of a measured excess of bromate-bromide in HCl medium and subsequent estimation of the residual bromine by reacting with a fixed amount of methyl orange, indigocarmine or thymol blue followed by measurement of absorbance at 520 nm (method A), 610 nm (method B) or 550 nm (method C). In all the methods, the amount of bromate reacted corresponds to the amount of STV. Calculations in titrimetry were based on a 1:0.666 (STV:KBrO3) stoichiometry and the method was found to be applicable over 3.5-10 mg range. A linear increase in absorbance with concentration of STV was observed in the spectrophotometric methods, and the Beer's law was obeyed over the concentration ranges 0.125-1.75, 1-10 and 1-9.0 microg mL-1 STV for method A, method B and method C, respectively. The methods when applied to the determination of STV in tablets and capsules were found to give satisfactory results. Topics: Azo Compounds; Bromates; Bromides; Capsules; Coloring Agents; Indigo Carmine; Pharmaceutical Preparations; Reproducibility of Results; Sensitivity and Specificity; Spectrophotometry; Stavudine; Tablets; Thymolphthalein; Titrimetry | 2008 |
Use of ceric ammonium sulphate and two dyes, methyl orange and indigo carmine, in the determination of lansoprazole in pharmaceuticals.
Two spectrophotometric methods are proposed for the assay of lansoprazole (LPZ) in bulk drug and in dosage forms using ceric ammonium sulphate (CAS) and two dyes, methyl orange and indigo carmine, as reagents. The methods involve addition of a known excess of CAS to LPZ in acid medium, followed by determination of residual CAS by reacting with a fixed amount of either methyl orange, measuring the absorbance at 520 nm (method A), or indigo carmine, measuring the absorbance at 610 nm (method B). In both methods, the amount of CAS reacted corresponds to the amount of LPZ and the measured absorbance was found to increase linearly with the concentration of LPZ, which is corroborated by the correlation coefficients of 0.9979 and 0.9954 for methods A and B, respectively. The systems obey Beer's law for 0.5-7.0 microg mL(-1) and 0.25-3.0 microg mL(-1) for methods A and B, respectively. The apparent molar absorptivities were calculated to be 3.0 x 10(4) and 4.4 x 10(4) L mol(-1) cm(-1) for methods A and B, respectively. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.08 and 0.25 microg mL(-1) for method A, and 0.09 and 0.27 microg mLs(-1) for method B, respectively. The intra-day and inter-day precision and accuracy of the methods were evaluated according to the current ICH guidelines. Both methods were of comparable accuracy (er < or = 2 %). Also, both methods are equally precise as shown by the relative standard deviation values < 1.5%. No interference was observed from common pharmaceutical adjuvants. The accuracy of the methods was further ascertained by performing recovery studies using the standard addition method. The methods were successfully applied to the assay of LPZ in capsule preparations and the results were statistically compared with those of the literature UV-spectrophotometric method by applying Student's t-test and F-test. Topics: 2-Pyridinylmethylsulfinylbenzimidazoles; Ammonium Sulfate; Anti-Infective Agents; Azo Compounds; Cerium; Chromatography, High Pressure Liquid; Coloring Agents; Drug Residues; Indigo Carmine; Lansoprazole; Molecular Structure; Reproducibility of Results; Spectrophotometry; Sulfates; Time Factors | 2007 |
Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps.
The photodegradation of various dyes in aqueous solution was studied. Experiments were carried out using glass coated titanium dioxide thin film as photocatalyst. Photodegradation processes of methylene blue (MB), methyl orange (MO), indigo carmine (IC), chicago sky blue 6B (CSB), and mixed dye (MD, mixture of the four mentioned single dye) were reported. As each photodegradation system is pH dependent, the photodegradation experiment was carried out in each dye photodegradation reactive pH range at approximately 28 degrees C. The dyes removal efficiency was studied and compared using UV-vis spectrophotometer analysis. The total removal of each dye was: methylene blue (90.3%), methyl orange (98.5%), indigo carmine (92.4%), chicago sky blue 6B (60.3%), and mixed dyes (70.1%), respectively. The characteristic of the photocatalyst was investigated using X-ray diffractometer (XRD). The amount of each dye intermediate produced in the photodegradation process was also determined with the help of total organic carbon (TOC) analysis. Topics: Azo Compounds; Coloring Agents; Fluorescence; Hydrogen-Ion Concentration; Indigo Carmine; Methylene Blue; Photochemistry; Titanium; Trypan Blue; Water; Water Pollutants, Chemical; Water Pollution, Chemical; X-Ray Diffraction | 2005 |