indigo-carmine has been researched along with 3-4-5-3--4--pentachlorobiphenyl* in 2 studies
2 other study(ies) available for indigo-carmine and 3-4-5-3--4--pentachlorobiphenyl
Article | Year |
---|---|
New CYP1 genes in the frog Xenopus (Silurana) tropicalis: induction patterns and effects of AHR agonists during development.
The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), β-naphthoflavone (βNF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versus the control, respectively). βNF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and βNF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 μM PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 μM PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions. Topics: Animals; beta-Naphthoflavone; Cell Proliferation; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Enzyme Induction; Female; Gene Expression Regulation, Developmental; Genome; Indigo Carmine; Indoles; Male; Models, Animal; Polychlorinated Biphenyls; Receptors, Aryl Hydrocarbon; Time Factors; Up-Regulation; Xenopus | 2011 |
Cytochrome P4501A induction in rainbow trout gills and liver following exposure to waterborne indigo, benzo[a]pyrene and 3,3',4,4',5-pentachlorobiphenyl.
We have developed a gill-filament based ethoxyresorufin O-deethylase (EROD) assay to be used as a tool to monitor cytochrome P4501A (CYP1A) induction in caged fish. The present study aimed to compare temporal patterns of EROD induction in gills and liver of rainbow trout (Oncorhynchus mykiss) exposed in the laboratory to readily metabolized and persistent CYP1A inducers, i.e. indigo, benzo[a]pyrene (BaP), and 3,3',4,4',5-pentachlorobiphenyl (PCB#126). Branchial and hepatic EROD activities were examined in fish exposed for 6, 12, or 24h and in fish exposed for 24h and then held in clean water for 2 or 14 days. Furthermore, branchial CYP1A protein expression was localized by immunohistochemistry. All compounds strongly induced branchial EROD activity within 6h. The highest EROD inductions observed for indigo, BaP, and PCB#126 were roughly similar in gills (52-, 76-, and 74-fold), but differed considerably in liver (11-, 78-, and 200-fold). In indigo- and BaP-exposed fish, both hepatic and branchial EROD activities decreased rapidly in clean water. In PCB#126-exposed fish, decreased branchial and increased hepatic EROD activities were observed following transfer to clean water. The substances gave rise to immunostaining for CYP1A at different cellular sites. All inducers increased the CYP1A-immunostaining in the gill filament secondary lamellae, but PCB#126 also induced a pronounced CYP1A immunoreactivity in cells near the basal membrane of the epithelium of the primary lamellae. The observation that the low BaP and indigo concentrations induced EROD activity markedly in the gills but only slightly or not at all in the liver, supports the contention that readily metabolized AhR agonists may escape detection when hepatic EROD activity is used for environmental monitoring. The results show that gill filament EROD activity is a sensitive biomarker both for persistent and readily metabolized AhR agonists in polluted water. Topics: Animals; Antibodies, Monoclonal; Benzo(a)pyrene; Cytochrome P-450 CYP1A1; Environmental Exposure; Gene Expression; Gills; Immunohistochemistry; Indigo Carmine; Indoles; Microsomes, Liver; Oncorhynchus mykiss; Polychlorinated Biphenyls; Time Factors; Water Pollutants, Chemical | 2006 |