indazoles has been researched along with lapatinib in 21 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (14.29) | 29.6817 |
2010's | 15 (71.43) | 24.3611 |
2020's | 3 (14.29) | 2.80 |
Authors | Studies |
---|---|
Acton, DG; Ballard, P; Barlaam, B; Bradbury, RH; Cross, D; Ducray, R; Germain, H; Hudson, K; Klinowska, T; Magnien, F; Ogilvie, DJ; Olivier, A; Ross, HS; Smith, R; Trigwell, CB; Vautier, M; Wright, L | 1 |
Belvin, M; Eastham-Anderson, J; Friedman, LS; Gunter, B; Haverty, PM; Hoeflich, KP; Lee-Hoeflich, ST; Lewin-Koh, N; Murray, LJ; Sliwkowski, MX; Truong, T; Yao, E; Zhou, W | 1 |
Commo, F; Dessen, P; Kroemer, G; Lacroix, L; Lazar, V; Olaussen, KA; Raza, SQ; Richon, C; Soria, JC; Tailler, M; Vitale, I | 1 |
Alber, JA; Ding, J; Mas Lopez, L; Monk, BJ; Oaknin, A; Pandite, LN; Stutts, MW; Tarpin, C; Termrungruanglert, W; Zarba, JJ | 1 |
Ghazaly, E; Joel, S; Kitromilidou, C; McGrowder, EH; Perry, J; Powles, T | 1 |
Arumugham, T; de Jonge, MJ; Hamberg, P; Hodge, J; Hurwitz, HI; Pandite, LN; Savage, S; Suttle, AB; Verweij, J | 1 |
Alvarez, RH; Blackwell, KL; Cristofanilli, M; Gladkov, O; Gomez, HL; Johnston, SR; Manikhas, A; Ranganathan, S; Redhu, S; Rubin, SD; Safina, S; Shao, Z; Trudeau, ME | 1 |
Durante, M; Gómez, H; Goodman, V; Johnston, SR; Pandite, L; Richie, M; Slamon, D; Stemmer, SM | 1 |
Barriuso, J; Curtis, CM; Dar, MM; de Bono, J; Groves, MD; Ma, B; McLendon, RE; Mikkelsen, T; Nabors, L; Raizer, J; Reardon, DA; Rosenfeld, S; Suttle, AB; Wen, PY | 1 |
Hunt, CM; Spraggs, CF; Xu, CF | 1 |
Ando, Y; Araki, K; Inada-Inoue, M; Ishida, H; Kawada, K; Mitsuma, A; Mizuno, K; Nagamatsu, K; Nagashima, F; Sasaki, Y; Sawaki, M; Sunakawa, Y; Takekura, A; Yamashita, K; Yokoyama, T | 1 |
Behera, R; Mensa-Wilmot, K; Thomas, SM | 1 |
Bendell, J; Burris, HA; Dowlati, A; Infante, JR; Jones, SF; Kane, MP; Levinson, KT; Stein, MN; Suttle, AB; Tan, AR | 1 |
Briley, LP; du Bois, A; Johnson, T; Parham, LR; Russo, M; Song, K; Spraggs, CF; Tada, H; Xu, CF | 1 |
Fu, S; George, GC; Henary, H; Hong, DS; Kurzrock, R; Mistry, R; Naing, A; Piha-Paul, S; Wheler, J; Zinner, R | 1 |
Burns, K; Chau, N; Kichenadasse, G; Knights, KM; Mackenzie, PI; McKinnon, RA; Miners, JO; Rowland, A; Tucker, GT | 1 |
Albiol-Chiva, J; Esteve-Romero, J; Peris-Vicente, J | 1 |
Badolo, L; Jede, C; Koziolek, M; Kubas, H; Lecomte, M; Wagner, C; Weber, C; Weigandt, M; Weitschies, W | 1 |
Bharathan, R; Chuai, Y; Dai, G; Li, Y; Otter, SJ; Rizzuto, I; Stewart, A; Wang, A; Zhang, X | 1 |
Chen, S; Lensing, MM; Lyu, C; Wagner, KU; Weigel, RJ; Ye, Y | 1 |
Assis, C; de Souza Bezerra, R; Lacerda Cintra, AJ; Li, C; Martins do Vale, WK; Max Gomes Martins, R; Meira Menezes, T; Neves, JL; Seabra, GM; Silva Dos Santos, RC | 1 |
2 review(s) available for indazoles and lapatinib
Article | Year |
---|---|
Genetic characterization to improve interpretation and clinical management of hepatotoxicity caused by tyrosine kinase inhibitors.
Topics: Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug-Related Side Effects and Adverse Reactions; Gilbert Disease; Glucuronosyltransferase; Humans; Indazoles; Lapatinib; Protein Kinase Inhibitors; Pyrimidines; Quinazolines; Sulfonamides | 2013 |
Vascular endothelial growth factor (VEGF) targeting therapy for persistent, recurrent, or metastatic cervical cancer.
Topics: Adult; Aged; Aged, 80 and over; Angiogenesis Inhibitors; Antineoplastic Agents; Bevacizumab; Bias; Brachytherapy; Combined Modality Therapy; Confidence Intervals; Female; Gastric Fistula; Gastrointestinal Hemorrhage; Humans; Hypertension; Indazoles; Intestinal Fistula; Intestinal Perforation; Lapatinib; Middle Aged; Neoplasm Recurrence, Local; Progression-Free Survival; Pyridines; Pyrimidines; Quality of Life; Quinazolines; Randomized Controlled Trials as Topic; Sulfonamides; Thromboembolism; Uterine Cervical Neoplasms; Vascular Endothelial Growth Factor A; Young Adult | 2021 |
8 trial(s) available for indazoles and lapatinib
Article | Year |
---|---|
Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer.
Topics: Adult; Aged; Aged, 80 and over; Angiogenesis Inhibitors; Antineoplastic Combined Chemotherapy Protocols; Disease-Free Survival; Drug Delivery Systems; Female; Humans; Indazoles; Lapatinib; Middle Aged; Protein Kinase Inhibitors; Pyrimidines; Quinazolines; Recurrence; Retreatment; Sulfonamides; Uterine Cervical Neoplasms | 2010 |
Phase I and pharmacokinetic study of pazopanib and lapatinib combination therapy in patients with advanced solid tumors.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Female; Humans; Indazoles; Lapatinib; Male; Maximum Tolerated Dose; Middle Aged; Neoplasms; Protein Kinase Inhibitors; Pyrimidines; Quinazolines; Sulfonamides; Young Adult | 2013 |
A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Diarrhea; Disease-Free Survival; Female; Humans; Indazoles; Inflammatory Breast Neoplasms; Lapatinib; Middle Aged; Pyrimidines; Quinazolines; Receptor, ErbB-2; Sulfonamides; Treatment Outcome | 2013 |
A randomized and open-label trial evaluating the addition of pazopanib to lapatinib as first-line therapy in patients with HER2-positive advanced breast cancer.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cohort Studies; Female; Humans; Indazoles; Lapatinib; Middle Aged; Neoplasm Staging; Pyrimidines; Quinazolines; Receptor, ErbB-2; Sulfonamides; Treatment Outcome | 2013 |
A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma.
Topics: Adult; Angiogenesis Inhibitors; Anticonvulsants; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Brain Neoplasms; Disease-Free Survival; Drug Delivery Systems; ErbB Receptors; Glioma; Humans; Indazoles; Lapatinib; Neoplasm Recurrence, Local; Neoplasm Staging; Pyrimidines; Quinazolines; Recurrence; Sulfonamides | 2013 |
Phase 1 study of pazopanib alone or combined with lapatinib in Japanese patients with solid tumors.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Asian People; Cohort Studies; Dose-Response Relationship, Drug; Female; Humans; Indazoles; Lapatinib; Male; Middle Aged; Neoplasms; Pyrimidines; Quinazolines; Sulfonamides | 2014 |
Phase I study of weekly paclitaxel in combination with pazopanib and lapatinib in advanced solid malignancies.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Biliary Tract Neoplasms; Carcinoma, Non-Small-Cell Lung; Drug Administration Schedule; Female; Humans; Indazoles; Lapatinib; Lung Neoplasms; Male; Maximum Tolerated Dose; Middle Aged; Paclitaxel; Pyrimidines; Quinazolines; Salivary Gland Neoplasms; Sulfonamides; Treatment Outcome | 2014 |
A phase 1 study of intermittently administered pazopanib in combination with continuous daily dosing of lapatinib in patients with solid tumors.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Dose-Response Relationship, Drug; Drug Administration Schedule; ErbB Receptors; Female; Gene Amplification; Humans; Indazoles; Lapatinib; Male; Middle Aged; Mutation; Neoplasms; Proto-Oncogene Proteins c-met; Pyrimidines; Quinazolines; Receptor, ErbB-2; Sulfonamides | 2015 |
11 other study(ies) available for indazoles and lapatinib
Article | Year |
---|---|
Neutral 5-substituted 4-indazolylaminoquinazolines as potent, orally active inhibitors of erbB2 receptor tyrosine kinase.
Topics: Administration, Oral; Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Dogs; Epidermal Growth Factor; ErbB Receptors; Ether-A-Go-Go Potassium Channels; Female; Hepatocytes; Humans; Indazoles; Keratinocytes; Lapatinib; Male; Metabolic Clearance Rate; Mice; Mice, Nude; Mice, SCID; Microsomes; Molecular Structure; Neoplasms, Experimental; Phosphorylation; Protein Kinase Inhibitors; Quinazolines; Rats; Rats, Wistar; Receptor, ErbB-2; Survival Rate; Xenograft Model Antitumor Assays | 2008 |
Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab.
Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Tumor; Docetaxel; Enzyme Inhibitors; Humans; Indazoles; Lapatinib; Mice; Mice, Nude; Phosphoinositide-3 Kinase Inhibitors; Quinazolines; Receptor, ErbB-2; Receptor, ErbB-3; Signal Transduction; Sulfonamides; Taxoids; Trastuzumab; Xenograft Model Antitumor Assays | 2009 |
Synergistic proapoptotic effects of the two tyrosine kinase inhibitors pazopanib and lapatinib on multiple carcinoma cell lines.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Humans; Indazoles; Lapatinib; Male; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-bcl-2; Pyrimidines; Quinazolines; Signal Transduction; Sulfonamides; Xenograft Model Antitumor Assays | 2009 |
A synergistic interaction between lapatinib and chemotherapy agents in a panel of cell lines is due to the inhibition of the efflux pump BCRP.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Cell Cycle; Cell Line, Tumor; Chromatography, High Pressure Liquid; Cisplatin; Drug Screening Assays, Antitumor; Drug Synergism; Flow Cytometry; Humans; Indazoles; Intracellular Space; Lapatinib; Neoplasm Proteins; Protein Kinase Inhibitors; Pyrimidines; Quinazolines; Sulfonamides | 2010 |
New chemical scaffolds for human african trypanosomiasis lead discovery from a screen of tyrosine kinase inhibitor drugs.
Topics: Animals; Axitinib; Benzamides; Erlotinib Hydrochloride; Female; HeLa Cells; Humans; Imatinib Mesylate; Imidazoles; Indazoles; Indoles; Lapatinib; Mice; Morpholines; Piperazines; Protein Kinase Inhibitors; Purines; Pyrimidines; Pyrroles; Quinazolines; Sunitinib; Trypanosomiasis, African | 2014 |
Different effects of the BIM deletion polymorphism on treatment of solid tumors by the tyrosine kinase inhibitors (TKI) pazopanib, sunitinib, and lapatinib.
Topics: Angiogenesis Inhibitors; Apoptosis Regulatory Proteins; Bcl-2-Like Protein 11; Gene Deletion; Humans; Indazoles; Indoles; Lapatinib; Membrane Proteins; Neoplasms; Polymorphism, Genetic; Prognosis; Prospective Studies; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Pyrimidines; Pyrroles; Quinazolines; Signal Transduction; Sulfonamides; Sunitinib | 2015 |
Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.
Topics: Bilirubin; Catalysis; Enzyme Inhibitors; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Indazoles; Kinetics; Lapatinib; Microsomes, Liver; Niacinamide; Phenylurea Compounds; Pyridines; Pyrimidines; Quinazolines; Sorafenib; Sulfonamides | 2017 |
Development of a method to determine axitinib, lapatinib and afatinib in plasma by micellar liquid chromatography and validation by the European Medicines Agency guidelines.
Topics: Afatinib; Antineoplastic Agents; Axitinib; Chromatography, Liquid; Drug Stability; Humans; Imidazoles; Indazoles; Lapatinib; Limit of Detection; Linear Models; Micelles; Neoplasms; Quinazolines; Reproducibility of Results | 2018 |
Improved Prediction of in Vivo Supersaturation and Precipitation of Poorly Soluble Weakly Basic Drugs Using a Biorelevant Bicarbonate Buffer in a Gastrointestinal Transfer Model.
Topics: Administration, Oral; Animals; Bicarbonates; Buffers; Chemical Precipitation; Drug Delivery Systems; Drug Liberation; Female; Gastrointestinal Absorption; Gastrointestinal Tract; Hydrogen-Ion Concentration; Indazoles; Ketoconazole; Lapatinib; Methylcellulose; Models, Biological; Phosphates; Pyrimidines; Rats; Rats, Wistar; Solubility; Sulfonamides | 2019 |
Targeting Gi/o protein-coupled receptor signaling blocks HER2-induced breast cancer development and enhances HER2-targeted therapy.
Topics: Animals; Antineoplastic Agents, Immunological; Benzodioxoles; Breast Neoplasms; Cell Line, Tumor; Cell Movement; Cell Proliferation; Drug Synergism; Epithelium; ErbB Receptors; Female; Humans; Indazoles; Lapatinib; Mammary Glands, Animal; Mice, Transgenic; Neoplasm Metastasis; Pertussis Toxin; Phosphoinositide-3 Kinase Inhibitors; Quinazolines; Receptor, ErbB-2; Receptors, G-Protein-Coupled; Signal Transduction; Sulfonamides; Trastuzumab; Up-Regulation | 2021 |
Binding Mechanism between Acetylcholinesterase and Drugs Pazopanib and Lapatinib: Biochemical and Biophysical Studies.
Topics: Acetylcholinesterase; Binding Sites; Indazoles; Lapatinib; Pharmaceutical Preparations; Protein Binding; Pyrimidines; Sulfonamides; Thermodynamics | 2021 |