imipramine has been researched along with sulfisoxazole in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (12.50) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (50.00) | 29.6817 |
2010's | 2 (25.00) | 24.3611 |
2020's | 1 (12.50) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Chang, TK; Ensom, MH; Kiang, TK | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chang, G; Mathialagan, S; Ryu, S; Varma, MVS; Woody, N | 1 |
Firlit, CF; King, LR; Smey, P | 1 |
1 review(s) available for imipramine and sulfisoxazole
Article | Year |
---|---|
UDP-glucuronosyltransferases and clinical drug-drug interactions.
Topics: Clinical Trials as Topic; Drug Interactions; Enzyme Activation; Enzyme Induction; Glucuronides; Glucuronosyltransferase; Humans; Pharmaceutical Preparations; Pharmacogenetics; Polymorphism, Genetic | 2005 |
7 other study(ies) available for imipramine and sulfisoxazole
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Identification of Organic Anion Transporter 2 Inhibitors: Screening, Structure-Based Analysis, and Clinical Drug Interaction Risk Assessment.
Topics: Drug Interactions; HEK293 Cells; Humans; Liver; Organic Anion Transporters, Sodium-Independent; Risk Assessment | 2022 |
Micturition urodynamic flow studies in children.
Topics: Adolescent; Child; Child, Preschool; Diazepam; Electromyography; Female; Humans; Imipramine; Male; Nitrofurantoin; Pressure; Propantheline; Rheology; Sulfisoxazole; Urinary Bladder; Urination Disorders; Urodynamics | 1978 |