imipramine has been researched along with raloxifene in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Guo, HF; Jin, J; Li, ZR; Liu, ZY; Xie, ZS; Xue, ST; Yi, H; Zhang, L | 1 |
1 review(s) available for imipramine and raloxifene
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for imipramine and raloxifene
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Substituted benzothiophene and benzofuran derivatives as a novel class of bone morphogenetic Protein-2 upregulators: Synthesis, anti-osteoporosis efficacies in ovariectomized rats and a zebrafish model, and ADME properties.
Topics: Animals; Benzofurans; Bone Morphogenetic Protein 2; Caco-2 Cells; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Mice; Mice, Inbred BALB C; Molecular Structure; Osteoporosis; Ovariectomy; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship; Thiophenes; Zebrafish | 2020 |