imipramine and avapro

imipramine has been researched along with avapro in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (50.00)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Andricopulo, AD; Moda, TL; Montanari, CA1
Lombardo, F; Obach, RS; Waters, NJ1
He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Sun, Y; Yan, Z1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Sen, S; Sinha, N1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Mercure, C; Reudelhuber, TL; Touyz, RM1

Reviews

1 review(s) available for imipramine and avapro

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

7 other study(ies) available for imipramine and avapro

ArticleYear
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:4

    Topics: Computational Biology; Drug Discovery; Hepatocytes; Humans; Hydrogen-Ion Concentration; Liver; Metabolic Clearance Rate; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship; Sensitivity and Specificity; Software

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:2

    Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship

2011
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Angiotensin II type I receptor modulates intracellular free Mg2+ in renally derived cells via Na+-dependent Ca2+-independent mechanisms.
    The Journal of biological chemistry, 2001, Apr-27, Volume: 276, Issue:17

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Adrenergic alpha-Antagonists; Adrenergic Uptake Inhibitors; Amiloride; Angiotensin II; Animals; Antihypertensive Agents; Benzofurans; Biphenyl Compounds; Calcium; Calcium Channel Agonists; Cell Line; Cells, Cultured; Chelating Agents; Cytosol; Dogs; Dose-Response Relationship, Drug; Egtazic Acid; Ethers, Cyclic; Fluorescent Dyes; Fura-2; Imidazoles; Imipramine; Irbesartan; Kidney; Kinetics; Magnesium; Microscopy, Fluorescence; Peptides; Pyridines; Quinidine; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Sodium; Tetrazoles; Time Factors

2001