imipramine has been researched along with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Arce, MP; Conde, S; García, AG; González-Muñoz, GC; López, B; López, MG; Pérez, C; Rodríguez-Franco, MI; Villarroya, M | 1 |
Arce, MP; Conde, S; del Barrio, L; Egea, J; García, AG; González-Muñoz, GC; León, R; López, B; López, MG; Martín-de-Saavedra, MD; Pérez, C; Rodríguez-Franco, MI; Romero, A; Villarroya, M | 1 |
Ai, J; Deng, Y; Li, Y; Liu, Q; Luo, L; Qiang, X; Tan, Z; Xiao, G; Yang, X | 1 |
3 other study(ies) available for imipramine and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
Article | Year |
---|---|
Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Catalytic Domain; Cattle; Cell Death; Cell Line, Tumor; Cell Survival; Cholinergic Agents; Cholinesterase Inhibitors; Esters; Glutamic Acid; Humans; Hydrophobic and Hydrophilic Interactions; Neuroprotective Agents; Permeability; Piperidines; Protein Binding | 2009 |
N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antineoplastic Agents; Butyrylcholinesterase; Calcium; Cell Death; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Okadaic Acid; Peptide Fragments; Phenothiazines; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured | 2011 |
Aurone Mannich base derivatives as promising multifunctional agents with acetylcholinesterase inhibition, anti-β-amyloid aggragation and neuroprotective properties for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Mannich Bases; Neuroprotective Agents; PC12 Cells; Rats | 2017 |