iloprost has been researched along with vapiprost* in 4 studies
4 other study(ies) available for iloprost and vapiprost
Article | Year |
---|---|
EP4 prostanoid receptor-mediated vasodilatation of human middle cerebral arteries.
1. Dilatation of the cerebral vasculature is recognised to be involved in the pathophysiology of migraine. Furthermore, elevated levels of prostaglandin E(2) (PGE(2)) occur in the blood, plasma and saliva of migraineurs during an attack, suggestive of a contributory role. In the present study, we have characterised the prostanoid receptors involved in the relaxation and contraction of human middle cerebral arteries in vitro. 2. In the presence of indomethacin (3 microm) and the TP receptor antagonist GR32191 (1 microM), PGE(2) was found to relax phenylephrine precontracted cerebral arterial rings in a concentration-dependent manner (mean pEC(50) 8.0+/-0.1, n=5). 3. Establishment of a rank order of potency using the EP(4)>EP(2) agonist 11-deoxy PGE(1), and the EP(2)>EP(4) agonist PGE(1)-OH (mean pEC(50) of 7.6+/-0.1 (n=6) and 6.4+/-0.1 (n=4), respectively), suggested the presence of functional EP(4) receptors. Furthermore, the selective EP(2) receptor agonist butaprost at concentrations <1 microM failed to relax the tissues. 4. Blockade of EP(4) receptors with the EP(4) receptor antagonists AH23848 and EP(4)A caused significant rightward displacements in PGE(2) concentration-response curves, exhibiting pA(2) and pK(B) values of 5.7+/-0.1, n=3, and 8.4, n=3, respectively. 5. The IP receptor agonists iloprost and cicaprost relaxed phenylephrine precontracted cerebral arterial rings (mean pEC(50) values 8.3+/-0.1 (n=4) and 8.1+/-0.1 (n=9), respectively). In contrast, the DP and FP receptor agonists PGD(2) and PGF(2 alpha) failed to cause appreciable relaxation or contraction at concentrations of up to 30 microm. In the absence of phenylephrine contraction and GR32191, the TP receptor agonist U46619 caused concentration-dependent contraction of cerebral artery (mean pEC(50) 7.4+/-0.3, n=3). 6. These data demonstrate the presence of prostanoid EP(4) receptors mediating PGE(2) vasodilatation of human middle cerebral artery. IP receptors mediating relaxation and TP receptors mediating contraction were also functionally demonstrated. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aged; Aged, 80 and over; Biphenyl Compounds; Dinoprostone; Dose-Response Relationship, Drug; Female; Heptanoic Acids; Humans; Iloprost; In Vitro Techniques; Indomethacin; Male; Middle Aged; Middle Cerebral Artery; Muscle Contraction; Muscle, Smooth, Vascular; Phenylephrine; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP2 Subtype; Receptors, Prostaglandin E, EP4 Subtype; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2004 |
Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins.
1. To characterize the prostanoid receptors (TP, FP, EP(1) and/or EP(3)) involved in the vasoconstriction of human pulmonary veins, isolated venous preparations were challenged with different prostanoid-receptor agonists in the absence or presence of selective antagonists. 2. The stable thromboxane A(2) mimetic, U46619, was a potent constrictor agonist on human pulmonary veins (pEC(50)=8.60+/-0.11 and E(max)=4.61+/-0.46 g; n=15). The affinity values for two selective TP-antagonists (BAY u3405 and GR32191B) versus U46619 were BAY u3405: pA(2)=8.94+/-0.23 (n=3) and GR32191B: apparent pK(B)=8.25+/-0.34 (n=3), respectively. These results are consistent with the involvement of TP-receptor in the U46619 induced contractions. 3. The two EP(1)-/EP(3)- agonists (17-phenyl-PGE(2) and sulprostone) induced contraction of human pumonary veins (pEC(50)=8.56+/-0.18; E(max)=0.56+/-0.24 g; n=5 and pEC(50)=7.65+/-0.13; E(max)=1.10+/-0.12 g; n=14, respectively). The potency ranking for these agonists: 17-phenyl-PGE(2) > sulprostone suggests the involvement of an EP(1)-receptor rather than EP(3). In addition, the contractions induced by sulprostone, 17-phenyl-PGE(2) and the IP-/EP(1)- agonist (iloprost) were blocked by the DP-/EP(1)-/EP(2)-receptor antagonist (AH6809) as well as by the EP(1) antagonist (SC19220). 4. PGF(2alpha) induced small contractions which were blocked by AH6809 while fluprostenol was ineffective. These results indicate that FP-receptors are not implicated in the contraction of human pulmonary veins. 5. These data suggest that the contractions induced by prostanoids involved TP- and EP(1)-receptors in human pulmonary venous smooth muscle. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Biphenyl Compounds; Carbazoles; Culture Techniques; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; Heptanoic Acids; Humans; Iloprost; Male; Middle Aged; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandin Antagonists; Prostaglandins F, Synthetic; Pulmonary Veins; Receptors, Prostaglandin; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype; Receptors, Prostaglandin E, EP3 Subtype; Receptors, Thromboxane; Sulfonamides; Vasoconstriction; Xanthenes; Xanthones | 2001 |
A common low-affinity binding site for primary prostanoids on bovine aortic endothelial cells.
[3H]PGE2 and [3H]PGF2 alpha were shown to bind with similar binding capacity and dissociation constants to bovine aorta endothelial cells. The similarity in the binding parameters suggests that both agonists may bind to the same binding site. Displacement of [3H]PGE2 performed with PGE2, PGF2 alpha or U-46619, a thromboxane agonist, shows that all three prostanoids displaced the bound [3H]PGE2 with comparable potency (IC50 = 10(-7) M). These results indicated that the three different prostanoids, which serve as specific agonists to different prostanoid receptors, also compete for the same binding site in bovine endothelial cells with similar affinity. Comparison of the displacement of [3H]PGE2 or [3H]PGF2 alpha by a number of prostaglandin agonists and antagonists further supports the notion that the natural prostanoids bind with similar affinities to the same binding site. Thus, sulprostone, an EP1/EP3 agonist, displaced bound [3H]PGE2 and [3H]PGF2 alpha with IC50 of about 10(-7) M. On the other hand, thromboxane antagonists (BAY u-3405 and GR-32191B), EP1 specific antagonist (SC-19220) EP1/DP antagonist (AH-6809) and iloprost, a stable prostacyclin agonist, failed to displace bound [3H]PGE2 or [3H]PGF2 alpha at a concentration range of 10(-9)-10(-6) M. Gradual increase of sodium fluoride (NaF), a general activator of G binding proteins, or incubation of permeabilized cells with GTP gamma S resulted in a decrease in [3H]PGE2 binding, suggesting that the binding site represents a low-affinity common prostanoid receptor which, similar to other prostanoid receptors, is probably coupled with G binding proteins. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Binding Sites; Biphenyl Compounds; Carbazoles; Cattle; Cells, Cultured; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Endothelium, Vascular; Epoprostenol; Heptanoic Acids; Iloprost; Prostaglandin Endoperoxides, Synthetic; Prostaglandins; Sulfonamides; Thromboxane A2; Thromboxanes; Xanthenes; Xanthones | 1996 |
A prostacyclin analog impairs the response to tissue-type plasminogen activator during coronary thrombolysis: evidence for a pharmacokinetic interaction.
Inhibition of thromboxane (TX) A2 with aspirin enhances the response to coronary thrombolysis. However, experimental evidence suggests that platelet activation during coronary thrombolysis is mediated by a number of agonists, in addition to TXA2. As a consequence, greater benefit would be expected with antiplatelet agents that have a broader spectrum of activity. However, a recent clinical trial, combining tissue plasminogen activator (t-PA) with the prostacyclin analog, iloprost, did not detect such a benefit. To address the mechanism of this response, we compared the effect of iloprost, a stable analog of prostacyclin, with GR32191, a TXA2/prostaglandin endoperoxide receptor antagonist, on the response to i.v. t-PA in a closed chest, canine model of coronary thrombosis. GR32191 reduced the time to reperfusion by 47% (n = 6, P less than .05), consistent with a role for TXA2-mediated platelet activation in impairing thrombolysis. In contrast, iloprost increased the time to reperfusion by 50% (n = 5, P = NS) and in four of nine animals reperfusion failed to occur despite inhibition of platelet aggregation. In a separate series of experiments, steady-state plasma t-PA clearance increased by 38% (407 +/- 49 vs. 294 +/- 42 ml/min; n = 8, P less than .02) during infusion of iloprost and recovered after its withdrawal. This appeared to be a specific effect, as infusion of nitroglycerin at a dose which induced a similar fall in blood pressure altered neither the time to reperfusion nor plasma t-PA. Iloprost impairs the thrombolytic response to t-PA via an increase in the clearance of this agent. Topics: Alprostadil; Animals; Biphenyl Compounds; Coronary Thrombosis; Dogs; Drug Interactions; Heptanoic Acids; Iloprost; Male; Platelet Aggregation; Reperfusion; Thrombolytic Therapy; Thromboxane A2; Tissue Plasminogen Activator | 1991 |