iloprost and sulprostone

iloprost has been researched along with sulprostone* in 14 studies

Other Studies

14 other study(ies) available for iloprost and sulprostone

ArticleYear
EP₃ receptor-mediated contraction of human pulmonary arteries and inhibition of neurogenic tachycardia in pithed rats.
    Pharmacological reports : PR, 2012, Volume: 64, Issue:6

    The aim of our study was (1) the pharmacological characterization of EP(3) receptors in human pulmonary arteries and (2) the examination of the potential involvement of these receptors in the regulation of neurogenic tachycardia in pithed rats. L-826266 served as the EP(3) receptor antagonist.. Experiments were performed on isolated human pulmonary arteries and pithed rats.. The prostanoid EP(1)/EP(3) receptor agonist sulprostone (1 nM - 100 μM) concentration-dependently contracted isolated human pulmonary arteries (pEC50, 6.88 ± 0.10). The EP(1) receptor antagonist SC 19920 (100 μM) did not affect the vasoconstriction induced by sulprostone, the TP receptor antagonist sulotroban (10 μM) only slightly attenuated the effects elicited by sulprostone >>3 μM, whereas L-826266 (10 μM) shifted its concentration-response curve to the right (apparent pA(2) value 6.18; incubation time 0.5 h). In rings exposed to L-826266 (0.1, 1 or 10 μM) for 3 h, a concentration-dependent inhibitory effect against the sulprostone-induced vasoconstriction was obtained, yielding a Schild plot-based pA(2) value of 7.39. In pithed rats, sulprostone (10 - 1,000 nmol/kg), but not the IP/EP(1) receptor agonist iloprost (1-100 nmol/kg), inhibited the electrically evoked increase in heart rate (HR) dose-dependently, maximally by at least 80%. L-826266 (3 μmol/kg) did not affect basal HR and diastolic blood pressure, but reduced the inhibitory effect of sulprostone 1,000 nmol/kg by about 20%.. EP(3) receptors (1) located postsynaptically strongly contract human pulmonary arteries and (2) located presynaptically on sympathetic nerve fibers supplying the heart of pithed rats strongly inhibit the neurogenic tachycardia.

    Topics: Acrylamides; Aged; Animals; Decerebrate State; Dinoprostone; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Heart; Heart Rate; Humans; Iloprost; Male; Middle Aged; Naphthalenes; Pulmonary Artery; Rats; Rats, Wistar; Receptors, Prostaglandin E, EP3 Subtype; Signal Transduction; Sulfonamides; Sympathetic Nervous System; Tachycardia; Vasoconstriction

2012
Prostanoid receptors involved in regulation of the beating rate of neonatal rat cardiomyocytes.
    PloS one, 2012, Volume: 7, Issue:9

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F(2α) and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD(2) and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP(1) and EP(3) receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP(1) antagonist). Butaprost (a selective prostanoid EP(2) receptor agonist), misoprostol (a prostanoid EP(2) and EP(3) receptor agonist), 11-deoxy-PGE(1) (a prostanoid EP(2), EP(3) and EP(4) receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP(1) receptors are involved in positive regulation of the beating rate. Prostanoid EP(1) receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP(1) and EP(1) receptors (which positively regulate the spontaneous beating rate).

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Animals, Newborn; Blotting, Western; Cells, Cultured; Cloprostenol; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Dose-Response Relationship, Drug; Epoprostenol; Hydantoins; Iloprost; Latanoprost; Myocytes, Cardiac; Prostaglandin D2; Prostaglandins F, Synthetic; Rats; Rats, Sprague-Dawley; Receptors, Prostaglandin; Receptors, Prostaglandin E, EP1 Subtype; Receptors, Thromboxane

2012
Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 335, Issue:1

    Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting.

    Topics: Acetamides; Animals; Dinoprostone; Dose-Response Relationship, Drug; Epoprostenol; Gastric Emptying; Gastrointestinal Transit; Humans; Iloprost; Male; Muscle Contraction; Pulmonary Artery; Pyrazines; Rats; Receptors, Epoprostenol; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Stomach

2010
Excitatory action of prostanoids on the ferret isolated vagus nerve preparation.
    European journal of pharmacology, 2004, Apr-26, Volume: 491, Issue:1

    We have investigated the actions of various prostanoid receptor agonists on an isolated preparation of the ferret cervical vagus using a grease-gap extracellular recording technique. The potency ranking for depolarization was BW245C (5-(6-carboxyhexyl)-1-(3-cyclohexyl-3-hydroxypropyl) hydantoin; DP-selective, EC50=0.14 microM)>prostaglandin E2 (nonselective EP agonist)>U-46619 (11alpha, 9alpha-epoxymethano-15S-hydroxyprosta-5Z,13E-dienoic acid; TP agonist)>prostaglandin F2alpha (FP receptor agonist). Sulprostone (EP1/EP3-selective), fluprostenol (FP-selective) and cicaprost and iloprost (both IP-selective) had minimal effects. It is likely that DP, EP2/EP4 and TP receptors are present on the vagal fibres of the ferret.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Biguanides; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; Electrophysiology; Epoprostenol; Ferrets; Hydantoins; Iloprost; In Vitro Techniques; Male; Prostaglandins; Prostaglandins F, Synthetic; Serotonin; Vagus Nerve

2004
Prostanoid-induced modulation of neuropeptide Y and noradrenaline release from the rat mesenteric bed.
    Autonomic & autacoid pharmacology, 2003, Volume: 23, Issue:2

    1. A variety of prostanoids were examined for their ability to alter the periarterial nerve stimulation-induced release of noradrenaline (NA) and neuropeptide Y immunoreactive compounds (NPY-ir) from the perfused mesenteric arterial bed of the rat. 2. Periarterial nerve stimulation (16 Hz) increased the overflow of NA, NPY-ir and perfusion pressure. 3. The prostacyclin (PGI2) analogues, carbaPGI2 and cicaprost both produced a concentration-dependent attenuation of the nerve stimulation-induced increase in NA, NPY-ir overflow and perfusion pressure. 4. The prostaglandin (PG) analogue PGE2 attenuated the evoked increase in NPY-ir overflow as well as a modest decrease in NA. 5. PGE1, sulprostone and iloprost attenuated the nerve stimulation-induced increase in NA overflow but not NPY-ir. 6. Neither PGF2alpha nor the thromboxane A2 analogue U46619 altered the evoked increase in NA or NPY-ir overflow. 7. The results support the view that sympathetic co-transmitter release can be differentially modulated by paracrine/autocrine mediators at sympathetic neuroeffector junctions.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alprostadil; Animals; Dinoprost; Dinoprostone; Electric Stimulation; Epoprostenol; Iloprost; Male; Mesenteric Arteries; Neuropeptide Y; Norepinephrine; Perfusion; Prostaglandins; Radioimmunoassay; Rats; Rats, Sprague-Dawley

2003
Differential peristaltic motor effects of prostanoid (DP, EP, IP, TP) and leukotriene receptor agonists in the guinea-pig isolated small intestine.
    British journal of pharmacology, 2002, Volume: 137, Issue:7

    1. Since the role of prostanoid receptors in intestinal peristalsis is largely unknown, the peristaltic motor effects of some prostaglandin (DP, EP, IP), thromboxane (TP) and leukotriene (LT) receptor agonists and antagonists were investigated. 2. Propulsive peristalsis in fluid-perfused segments from the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves. Alterations of distension sensitivity were deduced from alterations of the peristaltic pressure threshold and modifications of peristaltic performance were reflected by modifications of the amplitude, maximal acceleration and residual baseline pressure of the peristaltic waves. 3. Four categories of peristaltic motor effects became apparent: a decrease in distension sensitivity and peristaltic performance as induced by the EP1/EP3 receptor agonist sulprostone and the TP receptor agonist U-46619 (1-1000 nM); a decrease in distension sensitivity without a major change in peristaltic performance as induced by PGD(2) (3-300 nM) and LTD(4) (10-100 nM); a decrease in peristaltic performance without a major change in distension sensitivity as induced by PGE(1), PGE(2) (1-1000 nM) and the EP1/IP receptor agonist iloprost (1-100 nM); and a decrease in peristaltic performance associated with an increase in distension sensitivity as induced by the EP2 receptor agonist butaprost (1-1000 nM). The DP receptor agonist BW-245 C (1-1000 nM) was without effect. 4. The peristaltic motor action of sulprostone remained unchanged by the EP1 receptor antagonist SC-51089 (1 micro M) and the DP/EP1/EP2 receptor antagonist AH-6809 (30 micro M), whereas that of U-46619 and LTD(4) was prevented by the TP receptor antagonist SQ-29548 (10 micro M) and the cysteinyl-leukotriene(1) (cysLT(1)) receptor antagonist tomelukast (10 micro M), respectively. 5. These observations and their pharmacological analysis indicate that activation of EP2, EP3, IP, TP and cysLT(1) receptors, but not DP receptors, modulate intestinal peristalsis in a receptor-selective manner, whereas activation of EP1 seems to be without influence on propulsive peristalsis. In a wider perspective it appears as if the effect of prostanoid receptor agonists to induce diarrhoea is due to their prosecretory but not peristaltic motor action.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alprostadil; Animals; Bridged Bicyclo Compounds, Heterocyclic; Dinoprostone; Dose-Response Relationship, Drug; Fatty Acids, Unsaturated; Female; Guinea Pigs; Hydantoins; Hydrazines; Iloprost; In Vitro Techniques; Intestine, Small; Leukotriene Antagonists; Leukotriene D4; Male; Oxazepines; Peristalsis; Prostaglandin D2; Prostaglandins A; Receptors, Leukotriene; Receptors, Prostaglandin; Xanthenes; Xanthones; Yohimbine

2002
Regulation of prostacyclin and prostaglandin E(2) receptor mediated responses in adult rat dorsal root ganglion cells, in vitro.
    British journal of pharmacology, 2001, Volume: 133, Issue:1

    1. Primary cultures of adult rat dorsal root ganglia (DRG) were prepared to examine the properties of prostacyclin (IP) receptors and prostaglandin E(2) (EP) receptors in sensory neurones. 2. IP receptor agonists, cicaprost and iloprost, stimulated adenylyl cyclase activity with EC(50) values of 22 and 28 nM, respectively. Prostaglandin E(1) (PGE(1)) and prostaglandin E(2) (PGE(2)) were 7 fold less potent than cicaprost and iloprost, with PGE(2) displaying a lower maximal response. 3. Adenylyl cyclase activation by iloprost, PGE(1) and PGE(2), but not by forskolin, was highly dependent on DRG cell density. Although the potency of iloprost and PGE(2) for stimulating adenylyl cyclase was unchanged, their maximal responses were significantly increased at low cell density. 4. Both IP and EP(2/4) receptors could be down-regulated by agonist pretreatment, however the presence of cyclo-oxygenase (COX) inhibitors did not prevent this apparent down-regulation of IP and EP(2/4) receptors at high DRG cell densities. 5. Stimulation of adenylyl cyclase by the neuropeptide calcitonin gene-related peptide was also decreased at high DRG cell density, whereas the responses to beta-adrenoceptor agonists were increased at high DRG cell density. 6. Addition of nerve growth factor (NGF), or the addition of anti-neurotrophin antibodies during the 5-day culture of DRG cells, had no effect on IP receptor-mediated responses. 7. These results indicate that G(s)-coupled receptors involved in nociception are regulated in a variable manner in adult rat sensory neurones, and that this cell density-dependent regulation may be agonist-independent for IP and EP(2/4) receptors.

    Topics: Adenylyl Cyclases; Aging; Alprostadil; Animals; Antineoplastic Agents; Cell Count; Cells, Cultured; Colforsin; Cyclic AMP; Cyclooxygenase Inhibitors; Dinoprostone; Down-Regulation; Enzyme Activation; Epoprostenol; Ganglia, Spinal; Iloprost; Male; Neurons, Afferent; Rats; Rats, Sprague-Dawley; Receptors, Epoprostenol; Receptors, Prostaglandin

2001
Prostanoid EP(1)- and TP-receptors involved in the contraction of human pulmonary veins.
    British journal of pharmacology, 2001, Volume: 134, Issue:8

    1. To characterize the prostanoid receptors (TP, FP, EP(1) and/or EP(3)) involved in the vasoconstriction of human pulmonary veins, isolated venous preparations were challenged with different prostanoid-receptor agonists in the absence or presence of selective antagonists. 2. The stable thromboxane A(2) mimetic, U46619, was a potent constrictor agonist on human pulmonary veins (pEC(50)=8.60+/-0.11 and E(max)=4.61+/-0.46 g; n=15). The affinity values for two selective TP-antagonists (BAY u3405 and GR32191B) versus U46619 were BAY u3405: pA(2)=8.94+/-0.23 (n=3) and GR32191B: apparent pK(B)=8.25+/-0.34 (n=3), respectively. These results are consistent with the involvement of TP-receptor in the U46619 induced contractions. 3. The two EP(1)-/EP(3)- agonists (17-phenyl-PGE(2) and sulprostone) induced contraction of human pumonary veins (pEC(50)=8.56+/-0.18; E(max)=0.56+/-0.24 g; n=5 and pEC(50)=7.65+/-0.13; E(max)=1.10+/-0.12 g; n=14, respectively). The potency ranking for these agonists: 17-phenyl-PGE(2) > sulprostone suggests the involvement of an EP(1)-receptor rather than EP(3). In addition, the contractions induced by sulprostone, 17-phenyl-PGE(2) and the IP-/EP(1)- agonist (iloprost) were blocked by the DP-/EP(1)-/EP(2)-receptor antagonist (AH6809) as well as by the EP(1) antagonist (SC19220). 4. PGF(2alpha) induced small contractions which were blocked by AH6809 while fluprostenol was ineffective. These results indicate that FP-receptors are not implicated in the contraction of human pulmonary veins. 5. These data suggest that the contractions induced by prostanoids involved TP- and EP(1)-receptors in human pulmonary venous smooth muscle.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Biphenyl Compounds; Carbazoles; Culture Techniques; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; Heptanoic Acids; Humans; Iloprost; Male; Middle Aged; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandin Antagonists; Prostaglandins F, Synthetic; Pulmonary Veins; Receptors, Prostaglandin; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP1 Subtype; Receptors, Prostaglandin E, EP3 Subtype; Receptors, Thromboxane; Sulfonamides; Vasoconstriction; Xanthenes; Xanthones

2001
A common low-affinity binding site for primary prostanoids on bovine aortic endothelial cells.
    Cellular signalling, 1996, Volume: 8, Issue:7

    [3H]PGE2 and [3H]PGF2 alpha were shown to bind with similar binding capacity and dissociation constants to bovine aorta endothelial cells. The similarity in the binding parameters suggests that both agonists may bind to the same binding site. Displacement of [3H]PGE2 performed with PGE2, PGF2 alpha or U-46619, a thromboxane agonist, shows that all three prostanoids displaced the bound [3H]PGE2 with comparable potency (IC50 = 10(-7) M). These results indicated that the three different prostanoids, which serve as specific agonists to different prostanoid receptors, also compete for the same binding site in bovine endothelial cells with similar affinity. Comparison of the displacement of [3H]PGE2 or [3H]PGF2 alpha by a number of prostaglandin agonists and antagonists further supports the notion that the natural prostanoids bind with similar affinities to the same binding site. Thus, sulprostone, an EP1/EP3 agonist, displaced bound [3H]PGE2 and [3H]PGF2 alpha with IC50 of about 10(-7) M. On the other hand, thromboxane antagonists (BAY u-3405 and GR-32191B), EP1 specific antagonist (SC-19220) EP1/DP antagonist (AH-6809) and iloprost, a stable prostacyclin agonist, failed to displace bound [3H]PGE2 or [3H]PGF2 alpha at a concentration range of 10(-9)-10(-6) M. Gradual increase of sodium fluoride (NaF), a general activator of G binding proteins, or incubation of permeabilized cells with GTP gamma S resulted in a decrease in [3H]PGE2 binding, suggesting that the binding site represents a low-affinity common prostanoid receptor which, similar to other prostanoid receptors, is probably coupled with G binding proteins.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Aorta; Binding Sites; Biphenyl Compounds; Carbazoles; Cattle; Cells, Cultured; Dibenz(b,f)(1,4)oxazepine-10(11H)-carboxylic acid, 8-chloro-, 2-acetylhydrazide; Dinoprostone; Endothelium, Vascular; Epoprostenol; Heptanoic Acids; Iloprost; Prostaglandin Endoperoxides, Synthetic; Prostaglandins; Sulfonamides; Thromboxane A2; Thromboxanes; Xanthenes; Xanthones

1996
Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL.
    Biochimica et biophysica acta, 1995, Feb-16, Volume: 1265, Issue:1

    The group of prostaglandin (PG) E2- and prostacyclin receptors consists of different subtypes, which exhibit different affinities for prostaglandins and synthetic analogues. PGE2 activities the E-type PG receptor subtypes EP1, EP2 and EP3, whereas the PGE2 analogue, sulprostone, binds only to the EP1 and EP3 receptor subtypes. The stable PGI2 analogues, iloprost and cicaprost, both activate the PGI2 receptor (IP) and iloprost, additionally, bind to the EP1 subtype. Using these subtype-selective PG receptor agonists, we studied the interaction of PG receptor subtypes with Gs and Gi-type heterotrimeric guanine nucleotide-binding proteins (G proteins) in membranes from the human erythroleukaemia cell line, HEL. Sulprostone stimulated high-affinity GTPase in HEL membranes in a pertussis toxin (PTX)-sensitive manner. In contrast, the stimulations induced by PGE2, iloprost and cicaprost were only partially inhibited by PTX. PGE2, sulprostone, iloprost and cicaprost stimulated cholera toxin-catalysed ADP-ribosylation as well as labelling with GTP azidoanilide of membrane proteins comigrating with immunologically identified Gi protein alpha subunits. Furthermore, PGE2, iloprost and cicaprost enhanced GTP azidoanilide-labelling of Gs protein alpha subunits, whereas sulprostone did not. We suggest that in HEL cells (1) EP1 and EP3 receptor subtypes activate G1 proteins, that (2) the EP2 receptor subtype activates Gs proteins and that (3) the IP receptor activates both Gi and Gs proteins.

    Topics: Cell Membrane; Dinoprostone; Epoprostenol; GTP-Binding Proteins; Humans; Iloprost; Leukemia, Erythroblastic, Acute; Prostaglandins E; Receptors, Epoprostenol; Receptors, Prostaglandin; Receptors, Prostaglandin E; Signal Transduction; Tumor Cells, Cultured

1995
Critical limb ischemia after accidental subcutaneous infusion of sulprostone.
    European journal of obstetrics, gynecology, and reproductive biology, 1995, Volume: 61, Issue:2

    A 34-year-old patient was treated with constant intravenous infusion of sulprostone because of postpartum hemorrhage from a hypotonic uterus. The arm in which sulprostone had been infused was painful 23 h after infusion. A day later, the arm was found to be blueish, edematous and extremely painful as a result of arterial spasm. The vasospasm was probably caused by accidental subcutaneous infusion of sulprostone as a result of a displaced intravenous catheter. A diagnosis of critical limb ischemia was made. Treatment with the prostacyclin-analogue iloprost resulted in full recovery. Critical limb ischemia as a serious complication of sulprostone has not been previously reported.

    Topics: Adult; Arm; Diabetes, Gestational; Dinoprostone; Female; Fetal Membranes, Premature Rupture; Humans; Iloprost; Ischemia; Obstetric Labor, Premature; Postpartum Hemorrhage; Pregnancy; Vasodilator Agents

1995
Modulation of platelet activation by prostaglandin E2 mimics.
    Advances in prostaglandin, thromboxane, and leukotriene research, 1991, Volume: 21A

    Topics: Blood Platelets; Calcium; Cyclic AMP; Dinoprost; Dinoprostone; Humans; Iloprost; Platelet Activation; Receptors, Epoprostenol; Receptors, Prostaglandin; Receptors, Prostaglandin E; Tetradecanoylphorbol Acetate

1991
Influence of some prostaglandin-analogues on mouse skin allograft survival compared to dexamethasone. Possible role of thromboxane.
    Agents and actions, 1991, Volume: 32, Issue:1-2

    Topics: Animals; Dexamethasone; Dinoprost; Dinoprostone; Epoprostenol; Female; Graft Survival; Granulocytes; Humans; Iloprost; Mice; Mice, Inbred C57BL; Prostaglandins; Skin Transplantation; Thromboxane B2; Thromboxanes

1991
Influence of the PG-analogues iloprost, nalador and nileprost on rejection time and TXB2 content of murine tail skin allografts.
    Biomedica biochimica acta, 1988, Volume: 47, Issue:10-11

    Iloprost (2 X 330 micrograms/kg sc./d) better than nalador (2 X 500 micrograms/kg sc./d) prolonged the average time until the complete rejection of murine tail skin allografts in inbred mice. Nileprost (2 X 500 micrograms/kg sc./d) showed a similar trend. The TXB2 content in the ambient skin at the transplantation site was significantly diminished by all three PG-analogues, but by nileprost more than by iloprost or nalador.

    Topics: Animals; Cardiovascular Agents; Dinoprostone; Epoprostenol; Female; Graft Rejection; Iloprost; Mice; Mice, Inbred C57BL; Prostaglandins E, Synthetic; Reference Values; Skin; Skin Transplantation; Thromboxane B2; Transplantation, Homologous

1988