iloprost has been researched along with 5-6-epoxy-8-11-14-eicosatrienoic-acid* in 3 studies
3 other study(ies) available for iloprost and 5-6-epoxy-8-11-14-eicosatrienoic-acid
Article | Year |
---|---|
14,15-Epoxyeicosa-5(Z)-enoic acid: a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries.
Endothelium-dependent hyperpolarization and relaxation of vascular smooth muscle are mediated by endothelium-derived hyperpolarizing factors (EDHFs). EDHF candidates include cytochrome P-450 metabolites of arachidonic acid, K(+), hydrogen peroxide, or electrical coupling through gap junctions. In bovine coronary arteries, epoxyeicosatrienoic acids (EETs) appear to function as EDHFs. A 14,15-EET analogue, 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) was synthesized and identified as an EET-specific antagonist. In bovine coronary arterial rings preconstricted with U46619, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET induced concentration-related relaxations. Preincubation of the arterial rings with 14,15-EEZE (10 micromol/L) inhibited the relaxations to 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET but was most effective in inhibiting 14,15-EET-induced relaxations. 14,15-EEZE also inhibited indomethacin-resistant relaxations to methacholine and arachidonic acid and indomethacin-resistant and L-nitroarginine-resistant relaxations to bradykinin. It did not alter relaxation responses to sodium nitroprusside, iloprost, or the K(+) channel activators (NS1619 and bimakalim). Additionally, in small bovine coronary arteries pretreated with indomethacin and L-nitroarginine and preconstricted with U46619, 14,15-EEZE (3 micromol/L) inhibited bradykinin (10 nmol/L)-induced smooth muscle hyperpolarizations and relaxations. In rat renal microsomes, 14,15-EEZE (10 micromol/L) did not decrease EET synthesis and did not alter 20-hydroxyeicosatetraenoic acid synthesis. This analogue acts as an EET antagonist by inhibiting the following: (1) EET-induced relaxations, (2) the EDHF component of methacholine-induced, bradykinin-induced, and arachidonic acid-induced relaxations, and (3) the smooth muscle hyperpolarization response to bradykinin. Thus, a distinct molecular structure is required for EET activity, and alteration of this structure modifies agonist and antagonist activity. These findings support a role of EETs as EDHFs. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8,11,14-Eicosatrienoic Acid; Animals; Arachidonic Acid; Benzimidazoles; Benzopyrans; Bradykinin; Cattle; Coronary Vessels; Dihydropyridines; Dose-Response Relationship, Drug; Endothelium, Vascular; Iloprost; In Vitro Techniques; Kidney Cortex; Male; Microsomes; Muscle, Smooth, Vascular; Nitroprusside; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship; Vasoconstriction; Vasoconstrictor Agents; Vasodilation | 2002 |
PTX-sensitive G proteins and permissive action of prostacyclin in newborn pig cerebral circulation.
The present study of newborn pig cerebral circulation investigated the role of pertussis toxin (PTX)-sensitive GTP binding proteins in the permissive action of prostacyclin in specific dilator responses. Pial arterioles of anesthetized piglets were observed through closed cranial windows. The piglets were treated topically with PTX and intravenously with indomethacin. The effects of hypercapnia (10% CO2 ventilation) and topical 5,6-epoxyeicosatrienoic acid (5,6-EET) on pial arteriolar diameter were noted before and after the intervention. Samples of the artificial cerebrospinal fluid (aCSF) were collected from beneath the cranial windows for determination of the cAMP concentration. After administration of PTX, indomethacin still abolished pial arteriolar dilation to both hypercapnia and 5, 6-EET and also inhibited the cAMP elevation caused by hypercapnia. The addition of phorbol 12-myristate 13-acetate (PMA), but not iloprost, restored the increase in cAMP and vascular responses to hypercapnia and 5,6-EET. Therefore, in the newborn pig cerebral microvasculature, PTX appears to inhibit a G protein involved in the permissive action of prostacyclin. However, the protein kinase C (PKC) activator PMA appears to act downstream from the block, and, therefore, the permissive action of PMA is not affected by PTX. We suggest that the prostacyclin IP receptor may be coupled to phospholipase C via a PTX-sensitive G protein that normally permits vasodilation to specific stimuli via activation of a PKC, resulting in phosphorylation of a component of the adenylyl cyclase pathway. Topics: 8,11,14-Eicosatrienoic Acid; Adenylate Cyclase Toxin; Animals; Animals, Newborn; Arterioles; Carbon Dioxide; Cerebrovascular Circulation; Cyclic AMP; Endothelium, Vascular; GTP-Binding Proteins; Hydrogen-Ion Concentration; Iloprost; Indomethacin; Models, Cardiovascular; Muscle, Smooth, Vascular; Partial Pressure; Pertussis Toxin; Pia Mater; Swine; Tetradecanoylphorbol Acetate; Vasodilation; Virulence Factors, Bordetella | 1998 |
Newborn piglet cerebral microvascular responses to epoxyeicosatrienoic acids.
The present study on the newborn pig cerebral microcirculation determined the vasoactive properties of epoxyeicosatrienoic acids (EETs) and the contributions of prostaglandin cyclooxygenase to these properties. Pial arterioles of anesthetized piglets were observed through closed cranial windows, EETs were applied topically, and artificial cerebrospinal fluid from beneath the cranial windows was collected for the determination of adenosine 3',5'-cyclic monophosphate and 6-ketoprostaglandin F1 alpha. EETs caused dilation of pial arterioles and increased adenosine 3',5'-cyclic monophosphate. 5,6-EET produced a dose-dependent dilation at 10(-8) M and above, whereas 10(-6) M was required for 8,9-EET, 11,12-EET, and 14,15-EET. Indomethacin abolished pial arteriolar dilation to the EETs. However, EETs did not increase cortical 6-ketoprostaglandin F1 alpha concentration. Treatment of indomethacin-treated piglets with iloprost (10(-12) M topically) restored dilation to 5,6-EET. Neither isoproterenol nor sodium nitroprusside allowed vasodilation to 5,6-EET in indomethacin-treated piglets. Therefore, in the newborn pig cerebral microvasculature. EETs are potent vasodilators and prostacyclin-receptor agonists are necessary to allow this dilation to occur. Topics: 6-Ketoprostaglandin F1 alpha; 8,11,14-Eicosatrienoic Acid; Animals; Animals, Newborn; Arterioles; Carbon Dioxide; Cyclic AMP; Dose-Response Relationship, Drug; Iloprost; Indomethacin; Muscle, Smooth, Vascular; Nitroprusside; Pia Mater; Structure-Activity Relationship; Swine; Vasodilation; Vasodilator Agents | 1997 |