illite has been researched along with chlorite* in 4 studies
4 other study(ies) available for illite and chlorite
Article | Year |
---|---|
Comparison of the heterogeneous reaction of NO
Mineral particles in air could provide atmospheric chemical reaction interface for gaseous substances and participate in atmospheric chemical reaction process, and affecting the status and levels of gaseous pollutants in air. However, differences of the heterogenous reaction on the surface minerals particles are not very clear. Considering main mineral composition of ambient particles was from dust emission, therefore, typical clay minerals (chlorite, illite) and desert particles (Taklimakan Desert) were selected to analysize chemical reaction of NO Topics: Aerosols; Clay; Dust; Environmental Pollutants; Gases; Minerals; Nitrates; Nitrogen Dioxide | 2023 |
0.25 Ga Salt Deposits Preserve Signatures of Habitable Conditions and Ancient Lipids.
Polygonal features in a ∼250 million-year-old Permian evaporitic deposit were investigated for their geological and organic content to test the hypothesis that they could preserve the signature of ancient habitable conditions and biological activity. Investigations on evaporitic rock were carried out as part of the MIne Analog Research (MINAR) project at Boulby Mine, the United Kingdom. The edges of the polygons have a higher clay content and contain higher abundances of minerals such as quartz and microcline, and clays such as illite and chlorite, compared with the interior of polygons, suggesting that the edges were preferred locations for the accumulation of weathering products during their formation. The mineral content and its strontium isotope ratio suggest that the material is from continental weathering at the borders of the Permian Zechstein Sea. The edges of the polygons contain material with mean δ Topics: Aluminum Compounds; Biomarkers; Chlorides; Exobiology; Extraterrestrial Environment; Geologic Sediments; Lipids; Mars; Minerals; Quartz; Silicates; United Kingdom; Weather | 2020 |
Mineralogy, morphology, and textural relationships in coatings on quartz grains in sediments in a quartz-sand aquifer.
Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport experimental and modeling studies conducted at the site. Topics: Adsorption; Aluminum; Chlorides; Electron Probe Microanalysis; Ferric Compounds; Geologic Sediments; Iron Compounds; Massachusetts; Microscopy, Electron, Transmission; Minerals; Phosphorus; Quartz; Silicon; Silicon Dioxide; Water Pollutants, Chemical | 2011 |
The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils.
The effect of different rice cultivation periods on the properties of selected soils in alluvial plain were studied in Mazandaran province (north of Iran) in 2004. Soils were sampled form 0, 6, 16, 26 and over 40 years rice cultivation fields. In each treatment three soil profiles and six nearby auger holes were studied. The present study results indicated that continuous rice cultivation have changed soil moisture regime from xeric to aquic, soil color from brown to grayish, surface horizons from mollic to ochric epipedon and soil structure changed from granular or blocky to massive. Therefore, the soil order has changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of rice cultivation. X-ray diffraction analysis showed that clay minerals in non-rice cultivated field were illite, vermiculite, montmorillonite, kaolinite and chlorite, but in rice field were illite, montmorillonite, kaolinite and chlorite, respectively. In contrast of montmorillonite, the amount of illite and vermiculite have been decreased by increasing periods of rice cultivation. The pH values of the saturated soil surface in six weeks past plantation have shifted toward neutrality. While Eh value of non-paddy soils were about +90 mv, surface horizons of paddy soils at field conditions had Eh value about +40, -12, -84, -122 mv, respectively. The amounts of organic matter and available Fe, Mn, Zn and Cu were increased whereas available K was decreased in paddy soils. Topics: Agriculture; Aluminum Silicates; Bentonite; Chlorides; Clay; Hydrogen-Ion Concentration; Iran; Kaolin; Minerals; Oryza; Potassium; Soil; Time Factors; Water; X-Ray Diffraction | 2007 |