ifenprodil has been researched along with fg 9041 in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 4 (66.67) | 29.6817 |
2010's | 1 (16.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Gisselmann, G; Gottmann, K; Hatt, H; Mehrle, A | 1 |
Gottmann, K; Hatt, H; Mohrmann, R | 1 |
Miyatake, M; Nakamura, A; Narita, M; Shibasaki, M; Suzuki, T | 1 |
Kasanetz, F; Manzoni, OJ | 1 |
Jang, HJ; Joo, K; Kim, MJ; Lee, C; Rhie, DJ | 1 |
6 other study(ies) available for ifenprodil and fg 9041
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Presynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity.
Topics: Animals; Bicuculline; Cells, Cultured; Coculture Techniques; Embryo, Mammalian; Evoked Potentials; Excitatory Amino Acid Antagonists; Hippocampus; Kinetics; Macromolecular Substances; Magnesium; N-Methylaspartate; Neuronal Plasticity; Neurons; Organ Culture Techniques; Patch-Clamp Techniques; Piperidines; Polymerase Chain Reaction; Presynaptic Terminals; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Synapses | 1997 |
Developmental regulation of subunit composition of extrasynaptic NMDA receptors in neocortical neurones.
Topics: Animals; Cells, Cultured; Coculture Techniques; Dizocilpine Maleate; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Gene Expression Regulation, Developmental; Glutamic Acid; Glycine; Ion Channels; Neocortex; Neurons; Patch-Clamp Techniques; Picrotoxin; Piperidines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Stimulation, Chemical; Synapses | 2000 |
Glutamatergic neurotransmission and protein kinase C play a role in neuron-glia communication during the development of methamphetamine-induced psychological dependence.
Topics: Amphetamine-Related Disorders; Animals; Astrocytes; Calcium; Cell Communication; Central Nervous System Stimulants; Coculture Techniques; Conditioning, Operant; Excitatory Amino Acid Antagonists; Female; Glutamic Acid; Immunohistochemistry; Male; Methamphetamine; Mice; Mice, Inbred ICR; Microscopy, Confocal; Neuroglia; Neurons; Piperidines; Pregnancy; Protein Kinase C; Pyridines; Quinoxalines; Receptors, Glutamate; Synaptic Transmission | 2005 |
Maturation of excitatory synaptic transmission of the rat nucleus accumbens from juvenile to adult.
Topics: Age Factors; Analysis of Variance; Animals; Animals, Newborn; Biophysics; Calcium Chloride; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Male; Membrane Potentials; Neurons; Nucleus Accumbens; Patch-Clamp Techniques; Piperidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission | 2009 |
GluN2B-containing N-methyl-D-aspartate receptors compensate for the inhibitory control of synaptic plasticity during the early critical period in the rat visual cortex.
Topics: 2-Amino-5-phosphonovalerate; Age Factors; Animals; Animals, Newborn; Bicuculline; Diazepam; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA Modulators; GABA-A Receptor Antagonists; Gene Expression Regulation, Developmental; Long-Term Potentiation; Male; Neural Inhibition; Piperidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, GABA; Receptors, N-Methyl-D-Aspartate; Visual Cortex | 2015 |